NumPy 高级索引
NumPy 比一般的 Python 序列提供更多的索引方式。除了之前看到的用整数和切片的索引外,数组可以由整数数组索引、布尔索引及花式索引。
1. 整数数组索引
以下范例获取数组中(0,0),(1,1)和(2,0)位置处的元素。
import numpy as np x = np.array([[1, 2], [3, 4], [5, 6]]) y = x[[0,1,2], [0,1,0]] print (y)
输出结果为:
[1 4 5]
以下范例获取了 4X3 数组中的四个角的元素。 行索引是 [0,0] 和 [3,3],而列索引是 [0,2] 和 [0,2]。
import numpy as np x = np.array([[ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8],[ 9, 10, 11]]) print ('我们的数组是:' ) print (x) print ('\n') rows = np.array([[0,0],[3,3]]) cols = np.array([[0,2],[0,2]]) y = x[rows,cols] print ('这个数组的四个角元素是:') print (y)
输出结果为:
我们的数组是: [[ 0 1 2] [ 3 4 5] [ 6 7 8] [ 9 10 11]] 这个数组的四个角元素是: [[ 0 2] [ 9 11]]
返回的结果是包含每个角元素的 ndarray 对象。
可以借助切片 : 或 … 与索引数组组合。如下面例子:
import numpy as np a = np.array([[1,2,3], [4,5,6],[7,8,9]]) b = a[1:3, 1:3] c = a[1:3,[1,2]] d = a[...,1:] print(b) print(c) print(d)
输出结果为:
[[5 6] [8 9]] [[5 6] [8 9]] [[2 3] [5 6] [8 9]]
2. 布尔索引
我们可以通过一个布尔数组来索引目标数组。
布尔索引通过布尔运算(如:比较运算符)来获取符合指定条件的元素的数组。
以下范例获取大于 5 的元素:
import numpy as np x = np.array([[ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8],[ 9, 10, 11]]) print ('我们的数组是:') print (x) print ('\n') # 现在我们会打印出大于 5 的元素 print ('大于 5 的元素是:') print (x[x > 5])
输出结果为:
我们的数组是: [[ 0 1 2] [ 3 4 5] [ 6 7 8] [ 9 10 11] 大于 5 的元素是: [ 6 7 8 9 10 11]
以下范例使用了 ~(取补运算符)来过滤 NaN。
import numpy as np a = np.array([np.nan, 1,2,np.nan,3,4,5]) print (a[~np.isnan(a)])
输出结果为:
[ 1. 2. 3. 4. 5.]
以下范例演示如何从数组中过滤掉非复数元素。
import numpy as np a = np.array([1, 2+6j, 5, 3.5+5j]) print (a[np.iscomplex(a)])
输出如下:
[2.0+6.j 3.5+5.j]
3. 花式索引
花式索引指的是利用整数数组进行索引。
花式索引根据索引数组的值作为目标数组的某个轴的下标来取值。对于使用一维整型数组作为索引,如果目标是一维数组,那么索引的结果就是对应下标的行,如果目标是二维数组,那么就是对应位置的元素。
花式索引跟切片不一样,它总是将数据复制到新数组中。
1、传入顺序索引数组
import numpy as np x=np.arange(32).reshape((8,4)) print (x[[4,2,1,7]])
输出结果为:
[[16 17 18 19] [ 8 9 10 11] [ 4 5 6 7] [28 29 30 31]]
2、传入倒序索引数组
import numpy as np x=np.arange(32).reshape((8,4)) print (x[[-4,-2,-1,-7]])
输出结果为:
[[16 17 18 19] [24 25 26 27] [28 29 30 31] [ 4 5 6 7]]
3、传入多个索引数组(要使用np.ix_)
import numpy as np x=np.arange(32).reshape((8,4)) print (x[np.ix_([1,5,7,2],[0,3,1,2])])
输出结果为:
[[ 4 7 5 6] [20 23 21 22] [28 31 29 30] [ 8 11 9 10]]
广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式,对数组的算术运算通常在相应的元素上进行。