NumPy 创建数组

ndarray 数组除了可以使用底层 ndarray 构造器来创建外,也可以通过以下几种方式来创建。

 

1. numpy.empty

numpy.empty 方法用来创建一个指定形状(shape)、数据类型(dtype)且未初始化的数组:

numpy.empty(shape, dtype = float, order = 'C')

参数说明:

参数 描述
shape 数组形状
dtype 数据类型,可选
order 有"C"和"F"两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。

下面是一个创建空数组的范例:

import numpy as np 
x = np.empty([3,2], dtype = int) 
print (x)

输出结果为:

[[ 6917529027641081856  5764616291768666155]
 [ 6917529027641081859 -5764598754299804209]
 [          4497473538      844429428932120]]

注意 − 数组元素为随机值,因为它们未初始化。

 

2. numpy.zeros

创建指定大小的数组,数组元素以 0 来填充:

numpy.zeros(shape, dtype = float, order = 'C')

参数说明:

参数 描述
shape 数组形状
dtype 数据类型,可选
order 'C' 用于 C 的行数组,或者 'F' 用于 FORTRAN 的列数组
import numpy as np
 
# 默认为浮点数
x = np.zeros(5) 
print(x)
 
# 设置类型为整数
y = np.zeros((5,), dtype = np.int) 
print(y)
 
# 自定义类型
z = np.zeros((2,2), dtype = [('x', 'i4'), ('y', 'i4')])  
print(z)

输出结果为:

[0. 0. 0. 0. 0.]
[0 0 0 0 0]
[[(0, 0) (0, 0)]
 [(0, 0) (0, 0)]]

 

3. numpy.ones

创建指定形状的数组,数组元素以 1 来填充:

numpy.ones(shape, dtype = None, order = 'C')

参数说明:

参数 描述
shape 数组形状
dtype 数据类型,可选
order 'C' 用于 C 的行数组,或者 'F' 用于 FORTRAN 的列数组
import numpy as np
 
# 默认为浮点数
x = np.ones(5) 
print(x)
 
# 自定义类型
x = np.ones([2,2], dtype = int)
print(x)

输出结果为:

[1. 1. 1. 1. 1.]
[[1 1]
 [1 1]]

NumPy 支持从已有的数组创建新的数组。1. numpy.asarray:numpy.asarray 类似 numpy.array,但 numpy.asarray 参数只有三个,比 numpy.array 少两个。2. numpy.frombuffer:numpy.frombuffer 用于实现动态数组。numpy.frombuffer 接受 buffer 输入参数,以流的形式读入转化成 ndarray 对象。