bcrypt 算法
bcrypt 是专门为密码存储而设计的密码哈希函数,基于Blowfish 加密算法变形而来,由 Niels Provos 和 David Mazières 发表于1999年的 USENIX。bcrypt函数是OpenBSD和其他系统包括一些Linux发行版(如SUSE Linux)的默认密码哈希算法。
bcrypt 最大的好处是有一个参数 work factor,可用于调整计算强度,而且 work factor 是包括在输出的摘要中的。随着攻击者计算能力的提高,使用者可以逐步增大work factor,而且不会影响已有用户的登陆。
bcrypt 经过了很多安全专家的仔细分析,使用在以安全著称的OpenBSD中,一般认为它比 PBKDF2 更能承受随着计算能力加强而带来的风险。bcrypt 也有广泛的函数库支持,因此我们建议使用这种方式存储密码。
1. bcrypt 工作原理
我们先回顾一下Blowfish的加密原理。blowfish首先需要生成用于加密使用的K数组和S-box, blowfish在生成最终的K数组和S-box需要耗费一定的时间,每个新的密钥都需要进行大概4 KB文本的预处理,和其他分组密码算法相比,这个会很慢。但是一旦生成完毕,或者说密钥不变的情况下,blowfish还是很快速的一种分组加密方法。
那么慢有没有好处呢?当然有,因为对于一个正常应用来说,是不会经常更换密钥的。所以预处理只会生成一次。在后面使用的时候就会很快了。
而对于恶意攻击者来说,每次尝试新的密钥都需要进行漫长的预处理,所以对攻击者来说要破解blowfish算法是非常不划算的。所以blowfish是可以抵御字典攻击的。
Provos 和 Mazières 利用了这一点,并将其进一步发展。他们为Blowfish开发了一种新的密钥设置算法,将由此产生的密码称为 “Eksblowfish”(”expensive key schedule Blowfish”)。这是对Blowfish的改进算法,在bcrypt的初始密钥设置中,salt 和 password 都被用来设置子密钥。然后经过一轮轮的标准Blowfish算法,通过交替使用salt 和 password 作为key,每一轮都依赖上一轮子密钥的状态。虽然从理论上来说,bcrypt算法的强度并不比blowfish更好,但是因为在bcrpyt中重置key的轮数是可以配置的,所以可以通过增加轮数来更好的抵御暴力攻击。
2. bcrypt 算法实现
简单点说 bcrypt 算法就是对字符串 ”OrpheanBeholderScryDoubt” 进行64次 blowfish 加密得到的结果。有朋友会问了,bcrypt不是用来对密码进行加密的吗?怎么加密的是一个字符串?
别急,bcrpyt 是将密码作为对该字符串加密的因子,同样也得到了加密的效果。我们看下bcrypt的基本算法实现:
Function bcrypt Input: cost: Number (4..31) log2(Iterations). e.g. 12 ==> 212 = 4,096 iterations salt: array of Bytes (16 bytes) random salt password: array of Bytes (1..72 bytes) UTF-8 encoded password Output: hash: array of Bytes (24 bytes) //Initialize Blowfish state with expensive key setup algorithm //P: array of 18 subkeys (UInt32[18]) //S: Four substitution boxes (S-boxes), S0...S3. Each S-box is 1,024 bytes (UInt32[256]) P, S <- EksBlowfishSetup(cost, salt, password) //Repeatedly encrypt the text "OrpheanBeholderScryDoubt" 64 times ctext <- "OrpheanBeholderScryDoubt" //24 bytes ==> three 64-bit blocks repeat (64) ctext <- EncryptECB(P, S, ctext) //encrypt using standard Blowfish in ECB mode //24-byte ctext is resulting password hash return Concatenate(cost, salt, ctext)
上述函数 bcrypt 有 3 个输入和 1个输出。
在输入部分,cost 表示的是轮循的次数,这个我们可以自己指定,轮循次数多加密就慢。
salt 是加密用盐,用来混淆密码使用。
password 就是我们要加密的密码了。
最后的输出是加密后的结果 hash。
有了3个输入,我们会调用 EksBlowfishSetup 函数去初始化 18 个 subkeys 和4个1K大小的 S-boxes,从而达到最终的P和S。
然后使用 P 和 S 对 ”OrpheanBeholderScryDoubt” 进行64次blowfish运算,最终得到结果。
接下来看下 EksBlowfishSetup方法的算法实现:
Function EksBlowfishSetup Input: password: array of Bytes (1..72 bytes) UTF-8 encoded password salt: array of Bytes (16 bytes) random salt cost: Number (4..31) log2(Iterations). e.g. 12 ==> 212 = 4,096 iterations Output: P: array of UInt32 array of 18 per-round subkeys S1..S4: array of UInt32 array of four SBoxes; each SBox is 256 UInt32 (i.e. 1024 KB) //Initialize P (Subkeys), and S (Substitution boxes) with the hex digits of pi P, S <- InitialState() //Permutate P and S based on the password and salt P, S <- ExpandKey(P, S, salt, password) //This is the "Expensive" part of the "Expensive Key Setup". //Otherwise the key setup is identical to Blowfish. repeat (2cost) P, S <- ExpandKey(P, S, 0, password) P, S <- ExpandKey(P, S, 0, salt) return P, S
代码很简单,EksBlowfishSetup 接收上面我们的3个参数,返回最终的包含18个子key的P和4个1k大小的Sbox。
首先初始化,得到最初的P和S。
然后调用ExpandKey,传入salt和password,生成第一轮的P和S。
然后循环2的cost方次,轮流使用password和salt作为参数去生成P和S,最后返回。
最后看一下ExpandKey的实现:
Function ExpandKey Input: password: array of Bytes (1..72 bytes) UTF-8 encoded password salt: Byte[16] random salt P: array of UInt32 Array of 18 subkeys S1..S4: UInt32[1024] Four 1 KB SBoxes Output: P: array of UInt32 Array of 18 per-round subkeys S1..S4: UInt32[1024] Four 1 KB SBoxes //Mix password into the P subkeys array for n <- 1 to 18 do Pn <- Pn xor password[32(n-1)..32n-1] //treat the password as cyclic //Treat the 128-bit salt as two 64-bit halves (the Blowfish block size). saltHalf[0] <- salt[0..63] //Lower 64-bits of salt saltHalf[1] <- salt[64..127] //Upper 64-bits of salt //Initialize an 8-byte (64-bit) buffer with all zeros. block <- 0 //Mix internal state into P-boxes for n <- 1 to 9 do //xor 64-bit block with a 64-bit salt half block <- block xor saltHalf[(n-1) mod 2] //each iteration alternating between saltHalf[0], and saltHalf[1] //encrypt block using current key schedule block <- Encrypt(P, S, block) P2n <- block[0..31] //lower 32-bits of block P2n+1 <- block[32..63] //upper 32-bits block //Mix encrypted state into the internal S-boxes of state for i <- 1 to 4 do for n <- 0 to 127 do block <- Encrypt(state, block xor salt[64(n-1)..64n-1]) //as above Si[2n] <- block[0..31] //lower 32-bits Si[2n+1] <- block[32..63] //upper 32-bits return state
ExpandKey主要用来生成P和S,算法的生成比较复杂,大家感兴趣的可以详细研究一下。
3. bcrypt hash 的结构
我们可以使用bcrypt来加密密码,最终以bcrypt hash的形式保存到系统中,一个bcrypt hash的格式如下:
$2b$[cost]$[22 character salt][31 character hash]
比如:
$2a$10$N9qo8uLOickgx2ZMRZoMyeIjZAgcfl7p92ldGxad68LJZdL17lhWy \__/\/ \____________________/\_____________________________/ Alg Cost Salt Hash
上面例子中,2a 表示的hash算法的唯一标志。这里表示的是bcrypt算法。
10 表示的是代价因子,这里是2的10次方,也就是1024轮。
N9qo8uLOickgx2ZMRZoMye 是16个字节(128bits)的salt经过base64编码得到的22长度的字符。
最后的IjZAgcfl7p92ldGxad68LJZdL17lhWy是24个字节(192bits)的hash,经过bash64的编码得到的31长度的字符。
4. bcrypt hash 的历史
这种 hash 格式是遵循的是 OpenBSD 密码文件中存储密码时使用的 Modular Crypt Format 格式。最开始的时候格式定义是下面的:
- 1: MD5-based crypt (‘md5crypt’)
- 2: Blowfish-based crypt (‘bcrypt’)
- sha1: SHA-1-based crypt (‘sha1crypt’)
- 5: SHA-256-based crypt (‘sha256crypt’)
- 6: SHA-512-based crypt (‘sha512crypt’)
但是最初的规范没有定义如何处理非 ASCII 字符,也没有定义如何处理 null 终止符。修订后的规范规定,在 hash 字符串时:
- String 必须是UTF-8编码
- 必须包含null终止符
因为包含了这些改动,所以bcrypt的版本号被修改成了 2a。但是在2011年6月,因为PHP对bcypt的实现 crypt_blowfish 中的一个bug,他们建议系统管理员更新他们现有的密码数据库,用2x代替2a,以表明这些哈希值是坏的(需要使用旧的算法)。他们还建议让crypt_blowfish对新算法生成的哈希值使用头2y。当然这个改动只限于PHP的crypt_blowfish。
然后在2014年2月,在OpenBSD的bcrypt实现中也发现了一个bug,他们将字符串的长度存储在无符号char中(即8位Byte)。如果密码的长度超过255个字符,就会溢出来。
因为bcrypt是为OpenBSD创建的。所以当他们的库中出现了一个bug时, 他们决定将版本号升级到2b。
高级加密标准(AES,Advanced Encryption Standard)为最常见的对称加密算法(微信小程序加密传输就是用这个加密算法的)。对称加密算法也就是加密和解密用相同的密钥,具体的加密流程如下图:各个部分的作 ...