C/C++内存对齐详解

 

1. 什么是内存对齐

我们通过一段 C 语言程序,解释什么是内存对齐。理论上,下面的程序在 32 位系统下,int 占 4 byte,char 占一个 byte,那么将它们放到一个结构体中应该占 4+1=5byte,但是实际上,通过运行程序得到的结果是 8 byte,这就是内存对齐所导致的。

//32位系统
#include
struct{
    int x;
    char y;
}s;

int main()
{
    printf("%d\n",sizeof(s);  // 输出8
    return 0;
}

现代计算机中内存空间都是按照 byte 划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但是实际的计算机系统对基本类型数据在内存中存放的位置有限制,它们会要求这些数据的首地址的值是某个数k(通常它为4或8)的倍数,这就是所谓的内存对齐。

 

2. 为什么要进行内存对齐

尽管内存是以字节为单位,但是大部分处理器并不是按字节块来存取内存的。它一般会以双字节、四字节、8字节、16字节甚至32字节为单位来存取内存,我们将上述这些存取单位称为内存存取粒度。

现在考虑4字节存取粒度的处理器取int类型变量(32位系统),该处理器只能从地址为4的倍数的内存开始读取数据。

假如没有内存对齐机制,数据可以任意存放,现在一个int变量存放在从地址1开始的联系四个字节地址中,该处理器去取数据时,要先从0地址开始读取第一个4字节块,剔除不想要的字节(0地址),然后从地址4开始读取下一个4字节块,同样剔除不要的数据(5,6,7地址),最后留下的两块数据合并放入寄存器,这需要做很多工作。

C/C++内存对齐详解

现在有了内存对齐的,int类型数据只能存放在按照对齐规则的内存中,比如说0地址开始的内存。那么现在该处理器在取数据时一次性就能将数据读出来了,而且不需要做额外的操作,提高了效率。

C/C++内存对齐详解

 

3. 内存对齐规则

每个特定平台上的编译器都有自己的默认“对齐系数”(也叫对齐模数)。gcc中默认#pragma pack(4),可以通过预编译命令#pragma pack(n),n = 1,2,4,8,16来改变这一系数。

有效对其值:是给定值#pragma pack(n)和结构体中最长数据类型长度中较小的那个。有效对齐值也叫对齐单位。

了解了上面的概念后,我们现在可以来看看内存对齐需要遵循的规则:

(1) 结构体第一个成员的偏移量(offset)为0,以后每个成员相对于结构体首地址的 offset 都是该成员大小与有效对齐值中较小那个的整数倍,如有需要编译器会在成员之间加上填充字节。

(2) 结构体的总大小为 有效对齐值 的整数倍,如有需要编译器会在最末一个成员之后加上填充字节。

下面给出几个例子以便于理解:

// 32位系统
#include<stdio.h>
struct
{
    int i;    
    char c1;  
    char c2;  
} x1;

struct{
    char c1;  
    int i;    
    char c2;  
} x2;

struct{
    char c1;  
    char c2; 
    int i;    
} x3;

int main()
{
    printf("%d\n",sizeof(x1));  // 输出8
    printf("%d\n",sizeof(x2));  // 输出12
    printf("%d\n",sizeof(x3));  // 输出8
    return 0;
}

以上测试都是在Linux环境下进行的,linux下默认#pragma pack(4),且结构体中最长的数据类型为4个字节,所以有效对齐单位为4字节,下面根据上面所说的规则以s2来分析其内存布局:

首先使用规则1,对成员变量进行对齐:

sizeof(c1) = 1 <= 4(有效对齐位),按照1字节对齐,占用第0单元;

sizeof(i) = 4 <= 4(有效对齐位),相对于结构体首地址的偏移要为4的倍数,占用第4,5,6,7单元;

sizeof(c2) = 1 <= 4(有效对齐位),相对于结构体首地址的偏移要为1的倍数,占用第8单元;

然后使用规则2,对结构体整体进行对齐:

s2中变量i占用内存最大占4字节,而有效对齐单位也为4字节,两者较小值就是4字节。因此整体也是按照4字节对齐。由规则1得到s2占9个字节,此处再按照规则2进行整体的4字节对齐,所以整个结构体占用12个字节。

根据上面的分析,不难得出上面例子三个结构体的内存布局如下:

C/C++内存对齐详解

#pragma pack(n)

不同平台上编译器的 pragma pack 默认值不同。而我们可以通过预编译命令#pragma pack(n), n= 1,2,4,8,16来改变对齐系数。

例如,对于上个例子的三个结构体,如果前面加上#pragma pack(1),那么此时有效对齐值为1字节,此时根据对齐规则,不难看出成员是连续存放的,三个结构体的大小都是6字节。

C/C++内存对齐详解 如果前面加上#pragma pack(2),有效对齐值为2字节,此时根据对齐规则,三个结构体的大小应为6,8,6。内存分布图如下: C/C++内存对齐详解 经过上面的实例分析,大家应该对内存对齐有了全面的认识和了解,在以后的编码中定义结构体时需要考虑成员变量定义的先后顺序了。

在 go 语言里启动一个 http 服务非常简单,只需要一行代码http.ListenAndServe()就可以搞定,这个方法会一直阻塞着直到进程关闭,如果这个时候来了些特殊的需求比如:监听服务启动手动关闭服务 ...