R语言将变量分组的3种方法实例(含cut函数说明)
前言
在数据处理的过程中,我们有时候需要将连续的数值数据转换为类别数据,比如将收入分成高、中和低三组,将学生成绩分为优、良、中、及格和不及格五组。
本来将基于R语言,采用三种方法来实现;第一种是对变量直接进行重新赋值,第二种是使用within函数对语句进行组织,第三种是cut函数。
首先我们定义一个数据框,这个数据框包括学生姓名和数学成绩两个变量。
#定义数据框 mathScore <- data.frame(name=c("刘文涛","王宇翔","田思雨","徐丽娜","丁文彬","李志国","王智强","宋丽芳","袁芳芳","张建国"), math=c(85, 91, 74, 100, 82, 84, 78, 100, 51, 70)) head(mathScore)
接下来我们以90、80、70和60为界,将学生的数学成绩分为优、良、中、及格和不及格五类。
方法一:直接对分组变量进行赋值
#方法一:直接对分组变量进行赋值 attach(mathScore) mathScore$group1[math>=90]="优" mathScore$group1[math>= 80 & math < 90] = "良" mathScore$group1[math>= 70 & math < 80] = "中" mathScore$group1[math>= 60 & math < 70] = "及格" mathScore$group1[math < 60] = "不及格" detach(mathScore) head(mathScore)
这种方法较易理解,但使用attach函数可能会出现一些意想不到的问题,因此我们可以采用within函数,对代码进行优化,即方法二
方法二:使用within函数对变量进行分组
#方法二:使用within函数对变量进行分组 mathScore <- within(mathScore,{ group2 <- NA group2[math>=90]="优" group2[math>= 80 & math < 90] = "良" group2[math>= 70 & math < 80] = "中" group2[math>= 60 & math < 70] = "及格" group2[math < 60] = "不及格" }) head(mathScore)
在方法二中,要注意within函数的写法,赋值语句要用大括号括起来,并且每条赋值语句占一行。此外,在第一行首先定义了 group2 <- NA这个变量。
方法三:采用cut函数
采用cut函数也是较为常用的一种方法,但要注意的是需要对间段点的开闭进行设定。
#方法三:采用cut函数 mathScore$group3 <- cut(mathScore$math, breaks = c(-Inf, 60, 70, 80, 90, Inf), labels = c("不及格","及格","中","良","优"), right=FALSE)
在cut函数中:
- breaks表示分界点,Inf表示无穷大; labels表示每个类别的名称;
- right=FALSE表示表示区间为左闭右开,即分段时不包括右边的点,即良为[80,
90);right=TRUE则表示左闭右开区间(默认是这种情形)
我们执行mathScore代码,就可以看到三种方法得到的结果是一致的。
关于cut函数参数的补充说明:
cut函数有两个和分界点相关的参数,一个是include.lowest,一个是right,下面对这两个参数进行详细说明。
- right参数:right=TRUE表示左闭右开区间,right=FALSE表示左开右闭区间
- include.lowest参数:表示包括最小值或包括最大值
下面通过例子说明:
为了说明问题,我们把数据再重新定义一下,比原数据加入两行:
#重新定义一下数据框 mathScore <- data.frame(name=c("刘文涛","王宇翔","田思雨","徐丽娜","丁文彬","李志国","王智强","宋丽芳","袁芳芳","张建国","张志伟","李明"), math=c(85, 91, 74, 100, 82, 84, 78, 100, 51, 70, 0, NA)) head(mathScore)
我们把之前代码改写一下,把-Inf替换为0,把Inf替换为100,尝试一下结果:
#问题代码示例 mathScore$group <- cut(mathScore$math, breaks = c(0, 60, 70, 80, 90, 100), labels = c("不及格","及格","中","良","优"), right=FALSE) mathScore
我们可以看到输出的结果如下:
name math group
1 刘文涛 85 良
2 王宇翔 91 优
3 田思雨 74 中
4 徐丽娜 100 < NA >
5 丁文彬 82 良
6 李志国 84 良
7 王智强 78 中
8 宋丽芳 100 < NA >
9 袁芳芳 51 不及格
10 张建国 70 中
11 张志伟 0 不及格
12 李明 NA < NA >
此结果有问题,因为100分不包括在内,因为 right=FALSE是左闭右开区间,这时就要改写代码,加上参数include.lowest=TRUE
如下为正确代码示例:
#正确代码示例 mathScore$group <- cut(mathScore$math, breaks = c(0, 60, 70, 80, 90, 100), labels = c("不及格","及格","中","良","优"), right=FALSE, include.lowest=TRUE) mathScore
这时的结果如下,我们发现是结果正确的:
name math group
1 刘文涛 85 良
2 王宇翔 91 优
3 田思雨 74 中
4 徐丽娜 100 优
5 丁文彬 82 良
6 李志国 84 良
7 王智强 78 中
8 宋丽芳 100 优
9 袁芳芳 51 不及格
10 张建国 70 中
11 张志伟 0 不及格
12 李明 NA < NA >
因为right=FALSE是左闭右开区间,加上参数include.lowest=TRUE后,意为把最大值的右端点包括了。
为了深入了解两个端点参数的关系,我们尝试动下如下两段代码:
#对参数设置尝试的代码 mathScore$group <- cut(mathScore$math, breaks = c(0, 60, 70, 80, 90, 100), labels = c("不及格","及格","中","良","优"), right=TRUE, include.lowest=FALSE) mathScore
此代码为左闭右开区间,不包括最小值左侧端点;
#对参数设置尝试的代码 mathScore$group <- cut(mathScore$math, breaks = c(0, 60, 70, 80, 90, 100), labels = c("不及格","及格","中","良","优"), right=TRUE, include.lowest=TRUE) mathScore
此代码为左闭右开区间,包括最小值区间左侧端点。
因此,right和include.lowest总结如下:
right参数 | include.lowest参数 | 备注 |
---|---|---|
FALSE | TRUE | 左闭右开,包括最大值端点 |
TRUE | TRUE | 左开右闭,包括最小值端点 |
TRUE | FALSE | 左开右闭,不包括最小值端点 |
FALSE | FALSE | 左闭右开,包括最小值端点 |
其中,cut函数默认为right = TRUE, include.lowest=FALSE;
在实际的数据分析中,一般是将参数设置为right=FALSE, include.lowest=TRUE,即含下限不含上限,包括最大值区间右侧端点。
总结
关于R语言将变量分组的3种方法的文章就介绍至此,更多相关R语言变量分组内容请搜索编程宝库以前的文章,希望以后支持编程宝库!
trainControl参数详解源码caret::trainControl <- function (method = "boot", number = ifelse(g ...