Python中使用sklearn进行特征降维的方法

 

特征降维

0维 标量

1维 向量

2维 矩阵

概念

降维是指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程

注:正是因为在进行训练的时候,我们都是使用特征进行学习,如果特征本身存在问题或者特征之间相关性较强,对于算法学习预测会影响较大

降维的两种方式:

特征选择主成分分析(可以理解为一种特征提取的方式)

 

特征选择

①定义

数据中包含冗余或相关变量(或称特征、属性、指标等),旨在从原有特征中找出主要特征。

②方法

Filter(过滤式):主要探究特征本身特点、特征与特征和目标值之间关联

  • 方差选择法:低方差特征过滤
  • 相关系数

Embedded(嵌入式):算法自动选择特征(特征与目标值之间的关联)

  • 决策树:信息熵、信息增益
  • 正则化:L1、L2
  • 深度学习:卷积等

③模块

sklearn.feature_selection

 

过滤式

①低方差特征过滤

删除低方差的一些特征

  • 特征方差小:某个特征很多样本的值比较相近
  • 特征方差大:某个特征很多样本的值都有差别

API

sklearn.feature_selection.VarianceThreshold(threshold=0.0)

-删除所有低方差特征
-Variance.fit_transform(X)
X:numpy array格式的数据[n_samples,n_features]
返回值:训练集差异低于threshold的特征将被删除。默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征

代码演示

from sklearn.feature_selection import VarianceThreshold
import pandas as pd
def variance_demo():
  #1.获取数据
  data=pd.read_csv("data.TXT")
  print("data:\n", data)
  #2.实例化一个转换器类
  transfer=VarianceThreshold(threshold=7)
  #3.调用fit_transform
  result=transfer.fit_transform(data)
  print("result:\n", result,result.shape)
  return None

②相关系数

皮尔逊相关系数(Pearson Correlation Coefficient)

反映变量之间相关关系密切程度的统计指标

公式

特点

相关系数的值介于-1与+1之间,即-1<=r<=+1,其性质如下:

  • 当r>0时,表示两变量正相关,r<0时,两变量为负相关
  • 当|r|=1时,表示两变量为完全相关,当r=0时,表示两变量间无相关关系
  • 当0<|r|<1时,表示两变量存在一定程度的相关。且|r|越接近1,两变量间线性关系越密切;|r|越接近于0,表示两变量的线性相关越弱
  • 一般可按三级划分:|r|<0.4为低度相关;0.4<=|r|<0.7为显著性相关;0.7<=|r|<1为高度线性相关

API

from scipy.stats import pearsonr
-x:array
-y:array
-Returns:(Pearson`s correlation coefficient,p-value)

代码演示

from scipy.stats import pearsonr
def p_demo():
  # 1.获取数据
  data = pd.read_csv("data.TXT")
  print("data:\n", data)
  # 2.计算两个变量之间的相关系数
  r=pearsonr(data["one"],data["two"])
  print("相关系数:\n", r)
  return None

如果特征与特征之间相关性很高,通过以下方法处理:

①选取其中一个

②加权求和

③主成分分析

③主成分分析

定义

高维数据转化为低维数据的过程,在此过程中可能会舍弃原有数据、创造新的变量

作用

是数据维数压缩,尽可能降低原数据维数(复杂度),损失少量信息

应用

回归分析或者聚类分析当中

API

sklearn.decomposition.PCA(n_components=None)

-将数据分解为较低维数空间
-n_components:
小数:表示保留百分之多少的信息
整数:减少到多少特征
-PCA.fit_transform(X)
X:numpy array格式的数据[n_samples,n_features]
-返回值:转换后指定维度的array

使用

from sklearn.decomposition import PCA
def pca_demo():
  data=[[2,8,4,5],[6,3,0,8],[5,4,9,1]]
  #1.实例化一个转换器类
  transfer=PCA(n_components=2)
  #2.调用fit_transform
  result=transfer.fit_transform(data)
  print("result:\n",result)
  return None

关于Python中使用sklearn进行特征降维的方法的文章就介绍至此,更多相关Python sklearn特征降维内容请搜索编程宝库以前的文章,希望以后支持编程宝库

 时间序列预测时间序列是按照时间顺序排列的数据集合,在很多应用中都非常常见。时间序列分析是对这些数据进行分析和预测的过程。时间序列预测是该分析的一个重要组成部分,它可以根据已有的时间序列数据来预 ...