Python实现从网络摄像头拉流的方法分享
摘要
本文介绍几种从摄像头拉流的方法。
1、直接使用OpenCV
直接使用opencv的cv2.VideoCapture直接读取rtsp视频流,但是这样做的缺点是延迟严重、出现掉帧、花屏现象等,原因在于opencv自己有一个缓存,每次会顺序从自己的缓存中读取,而不是直接读取最新帧。
代码如下:
import cv2 import datetime def time_str(fmt=None): if fmt is None: fmt = '%Y_%m_%d_%H_%M_%S' return datetime.datetime.today().strftime(fmt) user_name, user_pwd = "admin", "1234" ca_ip="192.168.1.100" channel=2 cap = cv2.VideoCapture("rtsp://%s:%s@%s//Streaming/Channels/%d" \ % (user_name, user_pwd, ca_ip, channel)) if cap.isOpened(): print("Opened") while cap.isOpened(): ret, frame = cap.read() cv2.imwrite("opencv_"+time_str() + ".jpg", frame)
2、使用ffmpeg
FFmpeg是一套强大的视频、音频处理程序,也是很多视频处理软件的基础 。但是FFmpeg的命令行使用起来有一定的学习成本。而ffmpeg-python就是解决FFmpeg学习成本的问题,让开发者使用python就可以调用FFmpeg的功能,既减少了学习成本,也增加了代码的可读性。
github地址:https://github.com/kkroening/ffmpeg-python
2.1、安装方法
2.1.1、安装ffmpeg-python
ffmpeg-python可以通过典型的 pip 安装获取最新版本(注意:是ffmpeg-python,不要写成了python-ffmpeg):
pip install ffmpeg-python
或者可以从本地克隆和安装源:
git clone git@github.com:kkroening/ffmpeg-python.git pip install -e ./ffmpeg-python
2.1.2、安装FFmpeg
使用该库,需要自行安装FFmpeg,如果电脑已经安装了,可以忽略本步骤。这里推荐直接使用conda进行安装,可以省下很多麻烦,其他的安装方式自行百度。
conda install ffmpeg
2.2、代码实现
使用ffmpeg读取rtsp流并转换成numpy array,并使用cv2.imwrite保存。
import ffmpeg import numpy as np import cv2 import datetime def main(source): args = { "rtsp_transport": "tcp", "fflags": "nobuffer", "flags": "low_delay" } # 添加参数 probe = ffmpeg.probe(source) cap_info = next(x for x in probe['streams'] if x['codec_type'] == 'video') print("fps: {}".format(cap_info['r_frame_rate'])) width = cap_info['width'] # 获取视频流的宽度 height = cap_info['height'] # 获取视频流的高度 up, down = str(cap_info['r_frame_rate']).split('/') fps = eval(up) / eval(down) print("fps: {}".format(fps)) # 读取可能会出错错误 process1 = ( ffmpeg .input(source, **args) .output('pipe:', format='rawvideo', pix_fmt='rgb24') .overwrite_output() .run_async(pipe_stdout=True) ) while True: in_bytes = process1.stdout.read(width * height * 3) # 读取图片 if not in_bytes: break # 转成ndarray in_frame = ( np .frombuffer(in_bytes, np.uint8) .reshape([height, width, 3]) ) frame = cv2.cvtColor(in_frame, cv2.COLOR_RGB2BGR) # 转成BGR # cv2.imshow(time_str(), frame) cv2.imwrite(time_str()+".jpg", frame) # if cv2.waitKey(1) == ord('q'): # break process1.kill() # 关闭 def time_str(fmt=None): if fmt is None: fmt = '%Y_%m_%d_%H_%M_%S' return datetime.datetime.today().strftime(fmt) if __name__ == "__main__": # rtsp流需要换成自己的 user_name, user_pwd = "admin", "1234" ca_ip = "192.168.1.168" channel = 2 alhua_rtsp="rtsp://%s:%s@%s//Streaming/Channels/%d" \ % (user_name, user_pwd, ca_ip, channel) main(alhua_rtsp)
3、多线程的方式读取图片
采用多线程的方式,新开一个线程,利用变量、队列等方式保存最新帧,使得每次都读取最新帧,而不是opencv自己缓存中的顺序帧,不会延迟,不会花屏了,代码如下:
import cv2 import threading import sys import datetime def time_str(fmt=None): if fmt is None: fmt = '%Y_%m_%d_%H_%M_%S' return datetime.datetime.today().strftime(fmt) class RTSCapture(cv2.VideoCapture): _cur_frame = None _reading = False schemes = ["rtsp://","rtmp://"] @staticmethod def create(url, *schemes): rtscap = RTSCapture(url) rtscap.frame_receiver = threading.Thread(target=rtscap.recv_frame, daemon=True) rtscap.schemes.extend(schemes) if isinstance(url, str) and url.startswith(tuple(rtscap.schemes)): rtscap._reading = True elif isinstance(url, int): pass return rtscap def isStarted(self): ok = self.isOpened() if ok and self._reading: ok = self.frame_receiver.is_alive() return ok def recv_frame(self): while self._reading and self.isOpened(): ok, frame = self.read() if not ok: break self._cur_frame = frame self._reading = False def read2(self): frame = self._cur_frame self._cur_frame = None return frame is not None, frame def start_read(self): self.frame_receiver.start() self.read_latest_frame = self.read2 if self._reading else self.read def stop_read(self): self._reading = False if self.frame_receiver.is_alive(): self.frame_receiver.join() if __name__ == '__main__': user_name, user_pwd = "admin", "1234" ca_ip = "192.168.1.100" channel = 2 alhua_rtsp="rtsp://%s:%s@%s//Streaming/Channels/%d" \ % (user_name, user_pwd, ca_ip, channel) rtscap = RTSCapture.create(alhua_rtsp) rtscap.start_read() while rtscap.isStarted(): ok, frame = rtscap.read_latest_frame() # if cv2.waitKey(100) & 0xFF == ord('q'): # break if not ok: continue # inhere # cv2.imshow(time_str(), frame) cv2.imwrite(time_str() + ".jpg", frame) rtscap.stop_read() rtscap.release() cv2.destroyAllWindows()
运行结果:
4、多进程的方式拉流
使用Python3自带的多进程模块,创建一个队列,进程A从通过rtsp协议从视频流中读取出每一帧,并放入队列中,进程B从队列中将图片取出,处理后进行显示。进程A如果发现队列里有两张图片(证明进程B的读取速度跟不上进程A),那么进程A主动将队列里面的旧图片删掉,换上新图片。通过多线程的方法:
代码如下:
import cv2 import multiprocessing as mp import time import datetime def time_str(fmt=None): if fmt is None: fmt = '%Y_%m_%d_%H_%M_%S' return datetime.datetime.today().strftime(fmt) def image_put(q, user, pwd, ip, channel=1): cap = cv2.VideoCapture("rtsp://%s:%s@%s//Streaming/Channels/%d" % (user, pwd, ip, channel)) if cap.isOpened(): print('HIKVISION') else: cap = cv2.VideoCapture("rtsp://%s:%s@%s/cam/realmonitor?channel=%d&subtype=0" % (user, pwd, ip, channel)) print('DaHua') while True: q.put(cap.read()[1]) q.get() if q.qsize() > 1 else time.sleep(0.01) def image_get(q, window_name): # cv2.namedWindow(window_name, flags=cv2.WINDOW_FREERATIO) while True: frame = q.get() # cv2.imshow(window_name, frame) # cv2.waitKey(1) cv2.imwrite("opencv_"+time_str() + ".jpg", frame) cv2.waitKey(1) def run_single_camera(): user_name, user_pwd, camera_ip = "admin", "admin123456", "192.168.35.121" mp.set_start_method(method='spawn') # init queue = mp.Queue(maxsize=2) processes = [mp.Process(target=image_put, args=(queue, user_name, user_pwd, camera_ip)), mp.Process(target=image_get, args=(queue, camera_ip))] [process.start() for process in processes] [process.join() for process in processes] def run_multi_camera(): # user_name, user_pwd = "admin", "password" user_name, user_pwd = "admin", "1234" camera_ip_l = [ "192.168.1.XX3", # ipv4 "192.168.1.XX2", "192.168.1.XX1", ] mp.set_start_method(method='spawn') # init queues = [mp.Queue(maxsize=90) for _ in camera_ip_l] processes = [] for queue, camera_ip in zip(queues, camera_ip_l): processes.append(mp.Process(target=image_put, args=(queue, user_name, user_pwd, camera_ip))) processes.append(mp.Process(target=image_get, args=(queue, camera_ip))) for process in processes: process.daemon = True process.start() for process in processes: process.join() if __name__ == '__main__': # run_single_camera() run_multi_camera() pass
关于Python实现从网络摄像头拉流的方法分享的文章就介绍至此,更多相关Python网络摄像头拉流内容请搜索编程宝库以前的文章,希望以后支持编程宝库!
对比两个文件相似度,python中可通过difflib.SequenceMatcher/ssdeep/python_mmdt/tlsh实现,在大量需要对比,且文件较大时,需要更高的效率,可以考虑模 ...