Python实现从网络摄像头拉流的方法分享

 

摘要

本文介绍几种从摄像头拉流的方法。

 

1、直接使用OpenCV

直接使用opencv的cv2.VideoCapture直接读取rtsp视频流,但是这样做的缺点是延迟严重、出现掉帧、花屏现象等,原因在于opencv自己有一个缓存,每次会顺序从自己的缓存中读取,而不是直接读取最新帧。

代码如下:

import cv2
import datetime
def time_str(fmt=None):
  if fmt is None:
      fmt = '%Y_%m_%d_%H_%M_%S'
  return datetime.datetime.today().strftime(fmt)

user_name, user_pwd = "admin", "1234"
ca_ip="192.168.1.100"
channel=2
cap = cv2.VideoCapture("rtsp://%s:%s@%s//Streaming/Channels/%d" \
                         % (user_name, user_pwd, ca_ip, channel))
if cap.isOpened():
  print("Opened")
while cap.isOpened():
      ret, frame = cap.read()
      cv2.imwrite("opencv_"+time_str() + ".jpg", frame)

 

2、使用ffmpeg

FFmpeg是一套强大的视频、音频处理程序,也是很多视频处理软件的基础 。但是FFmpeg的命令行使用起来有一定的学习成本。而ffmpeg-python就是解决FFmpeg学习成本的问题,让开发者使用python就可以调用FFmpeg的功能,既减少了学习成本,也增加了代码的可读性。

github地址:https://github.com/kkroening/ffmpeg-python

2.1、安装方法

2.1.1、安装ffmpeg-python

ffmpeg-python可以通过典型的 pip 安装获取最新版本(注意:是ffmpeg-python,不要写成了python-ffmpeg):

pip install ffmpeg-python

或者可以从本地克隆和安装源:

git clone git@github.com:kkroening/ffmpeg-python.git
pip install -e ./ffmpeg-python

2.1.2、安装FFmpeg

使用该库,需要自行安装FFmpeg,如果电脑已经安装了,可以忽略本步骤。这里推荐直接使用conda进行安装,可以省下很多麻烦,其他的安装方式自行百度。

conda install ffmpeg

2.2、代码实现

使用ffmpeg读取rtsp流并转换成numpy array,并使用cv2.imwrite保存。

import ffmpeg
import numpy as np
import cv2
import datetime

def main(source):
  args = {
      "rtsp_transport": "tcp",
      "fflags": "nobuffer",
      "flags": "low_delay"
  }    # 添加参数
  probe = ffmpeg.probe(source)
  cap_info = next(x for x in probe['streams'] if x['codec_type'] == 'video')
  print("fps: {}".format(cap_info['r_frame_rate']))
  width = cap_info['width']           # 获取视频流的宽度
  height = cap_info['height']         # 获取视频流的高度
  up, down = str(cap_info['r_frame_rate']).split('/')
  fps = eval(up) / eval(down)
  print("fps: {}".format(fps))    # 读取可能会出错错误
  process1 = (
      ffmpeg
      .input(source, **args)
      .output('pipe:', format='rawvideo', pix_fmt='rgb24')
      .overwrite_output()
      .run_async(pipe_stdout=True)
  )
  while True:
      in_bytes = process1.stdout.read(width * height * 3)     # 读取图片
      if not in_bytes:
          break
      # 转成ndarray
      in_frame = (
          np
          .frombuffer(in_bytes, np.uint8)
          .reshape([height, width, 3])
      )
      frame = cv2.cvtColor(in_frame, cv2.COLOR_RGB2BGR)  # 转成BGR
      # cv2.imshow(time_str(), frame)
      cv2.imwrite(time_str()+".jpg", frame)
      # if cv2.waitKey(1) == ord('q'):
      #     break
  process1.kill()             # 关闭

def time_str(fmt=None):
  if fmt is None:
      fmt = '%Y_%m_%d_%H_%M_%S'
  return datetime.datetime.today().strftime(fmt)

if __name__ == "__main__":
  # rtsp流需要换成自己的
  user_name, user_pwd = "admin", "1234"
  ca_ip = "192.168.1.168"
  channel = 2
  alhua_rtsp="rtsp://%s:%s@%s//Streaming/Channels/%d" \
                         % (user_name, user_pwd, ca_ip, channel)

  main(alhua_rtsp)

 

3、多线程的方式读取图片

采用多线程的方式,新开一个线程,利用变量、队列等方式保存最新帧,使得每次都读取最新帧,而不是opencv自己缓存中的顺序帧,不会延迟,不会花屏了,代码如下:

import cv2
import threading
import sys
import  datetime
def time_str(fmt=None):
  if fmt is None:
      fmt = '%Y_%m_%d_%H_%M_%S'
  return datetime.datetime.today().strftime(fmt)

class RTSCapture(cv2.VideoCapture):
  _cur_frame = None
  _reading = False
  schemes = ["rtsp://","rtmp://"]
  @staticmethod
  def create(url, *schemes):
      rtscap = RTSCapture(url)
      rtscap.frame_receiver = threading.Thread(target=rtscap.recv_frame, daemon=True)
      rtscap.schemes.extend(schemes)
      if isinstance(url, str) and url.startswith(tuple(rtscap.schemes)):
          rtscap._reading = True
      elif isinstance(url, int):
          pass
      return rtscap

  def isStarted(self):
      ok = self.isOpened()
      if ok and self._reading:
          ok = self.frame_receiver.is_alive()
      return ok

  def recv_frame(self):
      while self._reading and self.isOpened():
          ok, frame = self.read()
          if not ok: break
          self._cur_frame = frame
      self._reading = False

  def read2(self):
      frame = self._cur_frame
      self._cur_frame = None
      return frame is not None, frame

  def start_read(self):
      self.frame_receiver.start()
      self.read_latest_frame = self.read2 if self._reading else self.read

  def stop_read(self):
      self._reading = False
      if self.frame_receiver.is_alive(): self.frame_receiver.join()


if __name__ == '__main__':
  user_name, user_pwd = "admin", "1234"
  ca_ip = "192.168.1.100"
  channel = 2
  alhua_rtsp="rtsp://%s:%s@%s//Streaming/Channels/%d" \
                         % (user_name, user_pwd, ca_ip, channel)

  rtscap = RTSCapture.create(alhua_rtsp)
  rtscap.start_read()

  while rtscap.isStarted():
      ok, frame = rtscap.read_latest_frame()
      # if cv2.waitKey(100) & 0xFF == ord('q'):
      #     break
      if not ok:
          continue


      # inhere
      # cv2.imshow(time_str(), frame)
      cv2.imwrite(time_str() + ".jpg", frame)


  rtscap.stop_read()
  rtscap.release()
  cv2.destroyAllWindows()

运行结果:

 

4、多进程的方式拉流

使用Python3自带的多进程模块,创建一个队列,进程A从通过rtsp协议从视频流中读取出每一帧,并放入队列中,进程B从队列中将图片取出,处理后进行显示。进程A如果发现队列里有两张图片(证明进程B的读取速度跟不上进程A),那么进程A主动将队列里面的旧图片删掉,换上新图片。通过多线程的方法:

代码如下:

import cv2
import multiprocessing as mp
import time
import datetime


def time_str(fmt=None):
  if fmt is None:
      fmt = '%Y_%m_%d_%H_%M_%S'
  return datetime.datetime.today().strftime(fmt)

def image_put(q, user, pwd, ip, channel=1):
  cap = cv2.VideoCapture("rtsp://%s:%s@%s//Streaming/Channels/%d" % (user, pwd, ip, channel))
  if cap.isOpened():
      print('HIKVISION')
  else:
      cap = cv2.VideoCapture("rtsp://%s:%s@%s/cam/realmonitor?channel=%d&subtype=0" % (user, pwd, ip, channel))
      print('DaHua')

  while True:
      q.put(cap.read()[1])
      q.get() if q.qsize() > 1 else time.sleep(0.01)


def image_get(q, window_name):
  # cv2.namedWindow(window_name, flags=cv2.WINDOW_FREERATIO)
  while True:
      frame = q.get()
      # cv2.imshow(window_name, frame)
      # cv2.waitKey(1)
      cv2.imwrite("opencv_"+time_str() + ".jpg", frame)
      cv2.waitKey(1)

def run_single_camera():
  user_name, user_pwd, camera_ip = "admin", "admin123456", "192.168.35.121"

  mp.set_start_method(method='spawn')  # init
  queue = mp.Queue(maxsize=2)
  processes = [mp.Process(target=image_put, args=(queue, user_name, user_pwd, camera_ip)),
               mp.Process(target=image_get, args=(queue, camera_ip))]

  [process.start() for process in processes]
  [process.join() for process in processes]

def run_multi_camera():
  # user_name, user_pwd = "admin", "password"
  user_name, user_pwd = "admin", "1234"
  camera_ip_l = [
      "192.168.1.XX3",  # ipv4
      "192.168.1.XX2",
      "192.168.1.XX1",
  ]

  mp.set_start_method(method='spawn')  # init
  queues = [mp.Queue(maxsize=90) for _ in camera_ip_l]

  processes = []
  for queue, camera_ip in zip(queues, camera_ip_l):
      processes.append(mp.Process(target=image_put, args=(queue, user_name, user_pwd, camera_ip)))
      processes.append(mp.Process(target=image_get, args=(queue, camera_ip)))

  for process in processes:
      process.daemon = True
      process.start()
  for process in processes:
      process.join()


if __name__ == '__main__':
  # run_single_camera()
  run_multi_camera()
  pass

关于Python实现从网络摄像头拉流的方法分享的文章就介绍至此,更多相关Python网络摄像头拉流内容请搜索编程宝库以前的文章,希望以后支持编程宝库

对比两个文件相似度,python中可通过difflib.SequenceMatcher/ssdeep/python_mmdt/tlsh实现,在大量需要对比,且文件较大时,需要更高的效率,可以考虑模 ...