Python实现视频目标检测与轨迹跟踪流程详解

 

一、原理

核心思想比较简单。即通过不同旋转角度的模板同时匹配,在多个结果中,找到相似度最大的结果,即认为匹配成功。 在视频的某一帧将这些模板分别进行匹配,即可获得较为准确的结果。

某一帧的物体搜索窗口如上图所示。0表示提取的原始模板,将原始模板以8个方向进行旋转,可得到8个不同旋转角度的模板。 依次与窗口进行模板匹配,可以得到相似度。取相似度最大的模板对应的坐标结果作为轨迹。

同时根据不同的精度需求,可以有4模板、8模板和16模板,对应方向如下。模板数目越多,其对旋转的检测性就越好、越精确。但同时计算量也会成倍增加。

 

二、代码实现

# coding=utf-8
import cv2
import numpy as np
import math
def calcVelocity(x1, x2, y1, y2, res, wT):
  dist = pow(pow(y1 - y2, 2) + pow(x1 - x2, 2), 0.5) * res
  v = dist / (wT / 1000.0) * 3.6
  return v
# ---------------必要参数---------------
# 待识别视频路径
video_path = 'E:\\object\\test_real.mp4'
# 卫星视频地表分辨率
resolution = 2
# 估计最快运动速度
velocity = 850
# ---------------必要参数---------------
# ---------------可选参数---------------
# 提取的模板是否为正方形
isSquare = True
# 是否自动根据速度信息计算阈值
isAutoDisThresh = True
# 是否为多模板
isMultiTemplate = True
# 是否采用均值对轨迹进行平滑
isSmooth = True
# 相邻轨迹点之间的距离阈值
dis_thresh = 10
# 多模板个数
templateNum = 8
# 初始待选窗口大小半径
range_d = 30
# 灰度阈值敏感度,越大灰度阈值越低
gray_factor = 0.2
# 识别框缩放因子,越大绘制的识别框越大
scale_factor = 1.5
# 模板缩放因子,越大模板图像越大
template_factor = 0.6
# 识别框颜色
color = (0, 0, 255)
# 输出路径
parent_path = video_path.replace(video_path.split("\\")[-1], '')
out_path = parent_path + "object.avi"
out_path2 = parent_path + "track.avi"
out_path3 = parent_path + "points.txt"
out_path4 = parent_path + "velocity.txt"
out_path5 = parent_path + "template.jpg"
# ---------------可选参数---------------
# 循环变量
count = 0
# 打开视频
cap = cv2.VideoCapture(video_path)
cap2 = cv2.VideoCapture(video_path)
# 获取视频图像大小
# video_h对应竖直方向,video_w对应水平方向
video_h = int(cap.get(4))
video_w = int(cap.get(3))
total = int(cap.get(7))
# 新建一张与视频等大的影像用于绘制轨迹
track = np.zeros((video_h, video_w, 3), np.uint8)
# tlp用于存放待选窗口的左上角点
tlp = []
# rbp用于存放待选窗口的右下角点
rbp = []
# bottom_right_points用于存放目标区域的右下角点
bottom_right_points = []
# center_points用于存放目标区域的中心点
center_points = []
# trackPoints用于存放目标区域的左上角点
trackPoints = []
# Vs用于存放目标各帧速度
Vs = []
# 根据视频信息计算每一帧的等待时间
if cap.get(5) != 0:
  waitTime = int(1000.0 / cap.get(5))
  fps = cap.get(5)
# 如果为真,则自动确定距离阈值
if isAutoDisThresh:
  # 计算物体帧间最大运动范围(像素)
  max_range = math.ceil((5.0 * velocity) / (18.0 * resolution * (fps - 1)))
  # 计算最大移动距离,作为阈值
  dis_thresh = math.ceil(pow(pow(max_range, 2) + pow(max_range, 2), 0.5))
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(out_path, fourcc, fps, (video_w, video_h))
out2 = cv2.VideoWriter(out_path2, fourcc, fps, (video_w, video_h))
# 首先提取模板图像
if cap2.isOpened():
  # 读取前两帧
  ret, frame1 = cap2.read()
  ret, frame2 = cap2.read()
  # 相减做差
  sub = cv2.subtract(frame1, frame2)
  # 得到的结果灰度化
  gray = cv2.cvtColor(sub, cv2.COLOR_BGR2GRAY)
  # 判断作差后的结果是否全为0
  if gray.max() != 0:
      # 找到最大值位置
      loc = np.where(gray == gray.max())
      loc_x = loc[1][0]
      loc_y = loc[0][0]
      # 以loc为中心,range_d为距离向外拓展得到window
      win_tl_x = loc_x - range_d
      win_tl_y = loc_y - range_d
      win_rb_x = loc_x + range_d
      win_rb_y = loc_y + range_d
      # 一些越界的判断
      if win_tl_x < 0:
          win_tl_x = 0
      if win_tl_y < 0:
          win_tl_y = 0
      if win_rb_x > video_w:
          win_rb_x = video_w
      if win_rb_y > video_h:
          win_rb_y = video_h
      # 根据窗口坐标提取窗口内容
      win_ini = cv2.cvtColor(frame1[win_tl_y:win_rb_y, win_tl_x:win_rb_x, :], cv2.COLOR_BGR2GRAY)
      # 获取最大值位置对应的灰度值
      tem_img = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
      # 由最大值对应灰度值计算合适的灰度阈值
      gray_thresh = tem_img[loc_y, loc_x] - gray_factor * tem_img[loc_y, loc_x]
      # 初始窗口二值化处理
      ret, thresh = cv2.threshold(win_ini, gray_thresh, 255, cv2.THRESH_BINARY)
      # 在初始窗口中寻找轮廓
      img2, contours, hi = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
      # 有可能找到多个轮廓,但认为包含点数最多的那个轮廓是要找的轮廓
      length = []
      for item in contours:
          length.append(item.shape[0])
      target_contour = contours[length.index(max(length))]
      # 获取目标轮廓的坐标信息
      x, y, w, h = cv2.boundingRect(target_contour)
      if isSquare:
          # 保证提取的模板为正方形
          tem_tl_x = win_tl_x + x
          tem_tl_y = win_tl_y + y
          tem_rb_x = win_tl_x + x + w
          tem_rb_y = win_tl_y + y + h
          center_x = (tem_tl_x + tem_rb_x) / 2
          center_y = (tem_tl_y + tem_rb_y) / 2
          delta = int(template_factor * max(w, h))
          real_tl_x = center_x - delta
          real_rb_x = center_x + delta
          real_tl_y = center_y - delta
          real_rb_y = center_y + delta
      else:
          # 不保证模板为正方形
          real_tl_x = win_tl_x + x
          real_tl_y = win_tl_y + y
          real_rb_x = win_tl_x + x + w
          real_rb_y = win_tl_y + y + h
      # 一些越界判断
      if real_tl_x < 0:
          real_tl_x = 0
      if real_tl_y < 0:
          real_tl_y = 0
      if real_rb_x > video_w:
          real_rb_x = video_w
      if real_rb_y > video_h:
          real_rb_y = video_h
      # 提取模板内容
      template = frame1[real_tl_y:real_rb_y, real_tl_x:real_rb_x, :]
      # 获取模板的宽高,h竖直方向,w水平方向
      h = template.shape[0]
      w = template.shape[1]
      d = max(w, h)
      # 是否是多模板匹配
      if isMultiTemplate:
          if templateNum == 16:
              M22_5 = cv2.getRotationMatrix2D((d / 2, d / 2), -22.5, 1)
              M45 = cv2.getRotationMatrix2D((d / 2, d / 2), -45, 1)
              M67_5 = cv2.getRotationMatrix2D((d / 2, d / 2), -67.5, 1)
              M90 = cv2.getRotationMatrix2D((d / 2, d / 2), -90, 1)
              M112_5 = cv2.getRotationMatrix2D((d / 2, d / 2), -112.5, 1)
              M135 = cv2.getRotationMatrix2D((d / 2, d / 2), -135, 1)
              M157_5 = cv2.getRotationMatrix2D((d / 2, d / 2), -157.5, 1)
              M180 = cv2.getRotationMatrix2D((d / 2, d / 2), -180, 1)
              M202_5 = cv2.getRotationMatrix2D((d / 2, d / 2), -202.5, 1)
              M225 = cv2.getRotationMatrix2D((d / 2, d / 2), -225, 1)
              M247_5 = cv2.getRotationMatrix2D((d / 2, d / 2), -247.5, 1)
              M270 = cv2.getRotationMatrix2D((d / 2, d / 2), -270, 1)
              M292_5 = cv2.getRotationMatrix2D((d / 2, d / 2), -292.5, 1)
              M315 = cv2.getRotationMatrix2D((d / 2, d / 2), -315, 1)
              M337_5 = cv2.getRotationMatrix2D((d / 2, d / 2), -337.5, 1)
              template22_5 = cv2.warpAffine(template, M22_5, (d, d))
              template45 = cv2.warpAffine(template, M45, (d, d))
              template67_5 = cv2.warpAffine(template, M67_5, (d, d))
              template90 = cv2.warpAffine(template, M90, (d, d))
              template112_5 = cv2.warpAffine(template, M112_5, (d, d))
              template135 = cv2.warpAffine(template, M135, (d, d))
              template157_5 = cv2.warpAffine(template, M157_5, (d, d))
              template180 = cv2.warpAffine(template, M180, (d, d))
              template202_5 = cv2.warpAffine(template, M202_5, (d, d))
              template225 = cv2.warpAffine(template, M225, (d, d))
              template247_5 = cv2.warpAffine(template, M247_5, (d, d))
              template270 = cv2.warpAffine(template, M270, (d, d))
              template292_5 = cv2.warpAffine(template, M292_5, (d, d))
              template315 = cv2.warpAffine(template, M315, (d, d))
              template337_5 = cv2.warpAffine(template, M337_5, (d, d))
          elif templateNum == 8:
              M45 = cv2.getRotationMatrix2D((d / 2, d / 2), -45, 1)
              M90 = cv2.getRotationMatrix2D((d / 2, d / 2), -90, 1)
              M135 = cv2.getRotationMatrix2D((d / 2, d / 2), -135, 1)
              M180 = cv2.getRotationMatrix2D((d / 2, d / 2), -180, 1)
              M225 = cv2.getRotationMatrix2D((d / 2, d / 2), -225, 1)
              M270 = cv2.getRotationMatrix2D((d / 2, d / 2), -270, 1)
              M315 = cv2.getRotationMatrix2D((d / 2, d / 2), -315, 1)
              template45 = cv2.warpAffine(template, M45, (d, d))
              template90 = cv2.warpAffine(template, M90, (d, d))
              template135 = cv2.warpAffine(template, M135, (d, d))
              template180 = cv2.warpAffine(template, M180, (d, d))
              template225 = cv2.warpAffine(template, M225, (d, d))
              template270 = cv2.warpAffine(template, M270, (d, d))
              template315 = cv2.warpAffine(template, M315, (d, d))
          elif templateNum == 4:
              M90 = cv2.getRotationMatrix2D((d / 2, d / 2), -90, 1)
              M180 = cv2.getRotationMatrix2D((d / 2, d / 2), -180, 1)
              M270 = cv2.getRotationMatrix2D((d / 2, d / 2), -270, 1)
              template90 = cv2.warpAffine(template, M90, (d, d))
              template180 = cv2.warpAffine(template, M180, (d, d))
              template270 = cv2.warpAffine(template, M270, (d, d))
      cv2.imshow("Template", template)
      cv2.imwrite(out_path5, template)
      offset = int(scale_factor * d)
      # 计算待选窗口左上角点坐标
      tlx = loc_x - d
      tly = loc_y - d
      # 判断是否越界,越界则设置为0
      if tlx < 0:
          tlx = 0
      if tly < 0:
          tly = 0
      range_tl = (tlx, tly)
      # 计算待选窗口右下角点坐标
      rbx = loc_x + w + d
      rby = loc_y + h + d
      # 判断是否越界,越界设置为视频长宽最大值
      if rbx > video_w:
          rbx = video_w
      if rby > video_h:
          rby = video_h
      range_rb = (rbx, rby)
      # 放入角点坐标列表
      tlp.append(range_tl)
      rbp.append(range_rb)
      cap2.release()
# 然后进行模板匹配
while cap.isOpened():
  # 读取每帧内容
  ret, frame = cap.read()
  # 判断帧内容是否为空,不为空继续
  if frame is None:
      break
  else:
      # 是否为多模板匹配模式
      if isMultiTemplate:
          if templateNum == 16:
              # 逐个模板进行匹配
              res = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :], template,
                                      cv2.TM_CCOEFF_NORMED)
              res22_5 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                          template22_5,
                                          cv2.TM_CCOEFF_NORMED)
              res67_5 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                          template67_5,
                                          cv2.TM_CCOEFF_NORMED)
              res112_5 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                           template112_5,
                                           cv2.TM_CCOEFF_NORMED)
              res157_5 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                           template157_5,
                                           cv2.TM_CCOEFF_NORMED)
              res202_5 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                           template202_5,
                                           cv2.TM_CCOEFF_NORMED)
              res247_5 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                           template247_5,
                                           cv2.TM_CCOEFF_NORMED)
              res292_5 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                           template292_5,
                                           cv2.TM_CCOEFF_NORMED)
              res337_5 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                           template337_5,
                                           cv2.TM_CCOEFF_NORMED)
              res90 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                        template90,
                                        cv2.TM_CCOEFF_NORMED)
              res180 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                         template180,
                                         cv2.TM_CCOEFF_NORMED)
              res270 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                         template270,
                                         cv2.TM_CCOEFF_NORMED)
              res45 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                        template45,
                                        cv2.TM_CCOEFF_NORMED)
              res135 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                         template135,
                                         cv2.TM_CCOEFF_NORMED)
              res225 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                         template225,
                                         cv2.TM_CCOEFF_NORMED)
              res315 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                         template315,
                                         cv2.TM_CCOEFF_NORMED)
              # 获取各模板对应的最大值
              m22_5 = np.max(res22_5)
              m67_5 = np.max(res67_5)
              m112_5 = np.max(res112_5)
              m157_5 = np.max(res157_5)
              m202_5 = np.max(res202_5)
              m247_5 = np.max(res247_5)
              m292_5 = np.max(res292_5)
              m337_5 = np.max(res337_5)
              m45 = np.max(res45)
              m135 = np.max(res135)
              m225 = np.max(res225)
              m315 = np.max(res315)
              m0 = np.max(res)
              m90 = np.max(res90)
              m180 = np.max(res180)
              m270 = np.max(res270)
              # 寻找最佳匹配结果
              m = max(m0, m22_5, m45, m67_5, m90,
                      m112_5, m135, m157_5, m180,
                      m202_5, m225, m247_5, m270,
                      m292_5, m315, m337_5)
              # 获取最佳匹配结果对应的坐标信息
              if m == m0:
                  mIndex = 0
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
              elif m == m90:
                  mIndex = 90
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res90)
              elif m == m180:
                  mIndex = 180
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res180)
              elif m == m270:
                  mIndex = 270
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res270)
              elif m == m45:
                  mIndex = 45
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res45)
              elif m == m135:
                  mIndex = 135
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res135)
              elif m == m225:
                  mIndex = 225
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res225)
              elif m == m315:
                  mIndex = 315
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res315)
              elif m == m22_5:
                  mIndex = 22.5
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res22_5)
              elif m == m67_5:
                  mIndex = 67.5
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res67_5)
              elif m == m112_5:
                  mIndex = 112.5
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res112_5)
              elif m == m157_5:
                  mIndex = 157.5
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res157_5)
              elif m == m202_5:
                  mIndex = 202.5
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res202_5)
              elif m == m247_5:
                  mIndex = 247.5
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res247_5)
              elif m == m292_5:
                  mIndex = 292.5
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res292_5)
              elif m == m337_5:
                  mIndex = 337.5
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res337_5)
          elif templateNum == 8:
              res = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :], template,
                                      cv2.TM_CCOEFF_NORMED)
              res90 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                        template90,
                                        cv2.TM_CCOEFF_NORMED)
              res180 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                         template180,
                                         cv2.TM_CCOEFF_NORMED)
              res270 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                         template270,
                                         cv2.TM_CCOEFF_NORMED)
              res45 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                        template45,
                                        cv2.TM_CCOEFF_NORMED)
              res135 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                         template135,
                                         cv2.TM_CCOEFF_NORMED)
              res225 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                         template225,
                                         cv2.TM_CCOEFF_NORMED)
              res315 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                         template315,
                                         cv2.TM_CCOEFF_NORMED)
              m45 = np.max(res45)
              m135 = np.max(res135)
              m225 = np.max(res225)
              m315 = np.max(res315)
              m0 = np.max(res)
              m90 = np.max(res90)
              m180 = np.max(res180)
              m270 = np.max(res270)
              m = max(m0, m45, m90, m135, m180, m225, m270, m315)
              if m == m0:
                  mIndex = 0
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
              elif m == m90:
                  mIndex = 90
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res90)
              elif m == m180:
                  mIndex = 180
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res180)
              elif m == m270:
                  mIndex = 270
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res270)
              elif m == m45:
                  mIndex = 45
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res45)
              elif m == m135:
                  mIndex = 135
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res135)
              elif m == m225:
                  mIndex = 225
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res225)
              elif m == m315:
                  mIndex = 315
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res315)
          elif templateNum == 4:
              res = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :], template,
                                      cv2.TM_CCOEFF_NORMED)
              res90 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                        template90,
                                        cv2.TM_CCOEFF_NORMED)
              res180 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                         template180,
                                         cv2.TM_CCOEFF_NORMED)
              res270 = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :],
                                         template270,
                                         cv2.TM_CCOEFF_NORMED)
              m0 = np.max(res)
              m90 = np.max(res90)
              m180 = np.max(res180)
              m270 = np.max(res270)
              m = max(m0, m90, m180, m270)
              if m == m0:
                  mIndex = 0
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
              elif m == m90:
                  mIndex = 90
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res90)
              elif m == m180:
                  mIndex = 180
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res180)
              elif m == m270:
                  mIndex = 270
                  min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res270)
      else:
          res = cv2.matchTemplate(frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :], template,
                                  cv2.TM_CCOEFF_NORMED)
          min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
      window = frame[tlp[count][1]:rbp[count][1], tlp[count][0]:rbp[count][0], :]
      cv2.imshow("Window", window)
      # top_left坐标顺序(水平,竖直)(→,↓)
      top_left = (max_loc[0] + tlp[count][0], max_loc[1] + tlp[count][1])
      bottom_right = (top_left[0] + w, top_left[1] + h)
      center_point = ((top_left[0] + bottom_right[0]) / 2, (top_left[1] + bottom_right[1]) / 2)
      if trackPoints.__len__() == 0:
          # 计算待选窗口左上角点坐标
          tlx = top_left[0] - d
          tly = top_left[1] - d
          # 判断是否越界,越界则设置为0
          if tlx < 0:
              tlx = 0
          if tly < 0:
              tly = 0
          range_tl = (tlx, tly)
          # 计算待选窗口右下角点坐标
          rbx = top_left[0] + w + d
          rby = top_left[1] + h + d
          # 判断是否越界,越界设置为视频长宽最大值
          if rbx > video_w:
              rbx = video_w
          if rby > video_h:
              rby = video_h
          range_rb = (rbx, rby)
          # 将待选窗口左上角点坐标和右下角点坐标依次添加到列表中
          tlp.append(range_tl)
          rbp.append(range_rb)
          # 将目标区域的左上角点、中心点、右下角点坐标依次加入列表
          trackPoints.append(top_left)
          bottom_right_points.append(bottom_right)
          center_points.append(center_point)
          cv2.circle(track, center_point, 2, (0, 0, 255), -1)
      else:
          # 加入运动连续性约束,若相邻轨迹点距离相差大于阈值,则认为错误
          distance = abs(trackPoints[-1][0] - top_left[0]) + abs(trackPoints[-1][1] - top_left[1])
          if distance > dis_thresh:
              print '100%'
              break
          else:
              # 计算待选窗口左上角点坐标
              tlx = top_left[0] - d
              tly = top_left[1] - d
              # 判断是否越界,越界则设置为0
              if tlx < 0:
                  tlx = 0
              if tly < 0:
                  tly = 0
              range_tl = (tlx, tly)
              # 计算待选窗口右下角点坐标
              rbx = top_left[0] + w + d
              rby = top_left[1] + h + d
              # 判断是否越界,越界设置为视频长宽最大值
              if rbx > video_w:
                  rbx = video_w
              if rby > video_h:
                  rby = video_h
              range_rb = (rbx, rby)
              # 将待选窗口左上角点坐标和右下角点坐标依次添加到列表中
              tlp.append(range_tl)
              rbp.append(range_rb)
              # 将目标区域的左上角点、中心点、右下角点坐标依次加入列表
              trackPoints.append(top_left)
              bottom_right_points.append(bottom_right)
              # 判断是否采用均值平滑
              if isSmooth:
                  # 采用均值平滑,平滑轨迹
                  center_point = ((center_point[0] + center_points[-1][0]) / 2,
                                  (center_point[1] + center_points[-1][1]) / 2)
              center_points.append(center_point)
              # 绘制目标识别框
              cv2.rectangle(frame,
                            (center_point[0] - offset, center_point[1] - offset),
                            (center_point[0] + offset, center_point[1] + offset),
                            color, 2)
              # 绘制运动轨迹
              cv2.line(track, center_points[-2], center_points[-1], (255, 255, 255), 1)
              # 计算速度
              Vs.append(calcVelocity(center_points[-2][0],
                                     center_points[-1][0],
                                     center_points[-2][1],
                                     center_points[-1][1],
                                     resolution,
                                     waitTime))
      # 输出目标、轨迹视频
      out.write(frame)
      out2.write(track)
      count += 1
      print round((count * 1.0 / total) * 100, 2), '%'
      # 显示结果
      cv2.imshow("Tr", track)
      cv2.imshow("Fr", frame)
      # 退出控制
      k = cv2.waitKey(waitTime) & 0xFF
      if k == 27:
          break
# 打印轨迹坐标
print trackPoints
print '相邻帧距离阈值:', dis_thresh
print '灰度阈值:', gray_thresh
print '模板缩放因子:', template_factor
print '识别框缩放因子:', scale_factor
# 输出中心点轨迹
output = open(out_path3, 'w')
for item in center_points:
  output.write(item.__str__() + "\n")
# 输出各帧速度
output2 = open(out_path4, 'w')
for item in Vs:
  output2.write(item.__str__() + "\n")
# 释放对象
cap.release()
out.release()
out2.release()
output.close()
output2.close()

在代码中主要做了如下改进:

1.增加多模板匹配机制

为了能精确地检测物体的旋转,引入多模板匹配。在代码中有4、8、16不同数量的模式可选。模板越多,对于旋转的识别越精确。 下图匹配模板数分别是1、4、8、16。

可以看到,单模版匹配已经无法正常识别跟踪了。模板数为4时,会有少量跟踪错误。当模板数为8和16时,跟踪的轨迹就相对精确了。 下图是采用8模板和单模板匹配的轨迹比较,可以看到,利用多模板匹配,可以较好识别旋转物体。 白色为单模版匹配轨迹,红色为多模板匹配轨迹。

同时考虑到卫星视频动目标一般运动形式是平移和旋转,没有缩放。所以经过优化的算法可以满足大部分需求。

2.增加轨迹平滑

通过对轨迹列表中最后两个点求均值作为最终的轨迹点,可以对提取的轨迹进行一定程度的平滑。

 

三、测试对比

下图是模拟飞机曲线飞行的视频。对其进行目标识别和轨迹提取后如下。

对应的飞行轨迹如下。

可以看到,相较于单模版匹配,能较好地提取运动目标和轨迹。而采用之前的单模版匹配算法,经过测试在刚转弯时就跟丢了,如下。

关于Python实现视频目标检测与轨迹跟踪流程详解的文章就介绍至此,更多相关Python视频目标检测内容请搜索编程宝库以前的文章,希望以后支持编程宝库

我的代码的哪些部分运行时间最长、内存最多?我怎样才能找到需要改进的地方?”在开发过程中,我很确定我们大多数人都会想知道这一点,而且通常情况下存在开发空间。在本文中总结了一些方法来监 ...