Python高光谱遥感影像处理问题详细分析讲解

 

前言

在写波段配准相关代码时经常需要用到tif影像的波段合成和分解,虽然可以用ENVI才处理,但是每次都要打开再设置一些参数有些麻烦,所以本着“独立自主、自力更生”的原则就写了些脚本来处理这个需求。又写了个批量裁剪影像的脚本。这里简单总结归纳一下。

 

1.波段合并

# coding=utf-8
import sys
import cv2
import functions as fun
import os
if __name__ == '__main__':
  if sys.argv.__len__() >= 2:
      if sys.argv[1] == 'help' or sys.argv[1] == 'HELP':
          print("Function description:")
          print("Join several bands into one file.")
          print("\nUsage instruction:")
          print("example.exe [img_dir] [img_type] [out_path]")
          print("[img_dir]:The input dir that contains band data.")
          print("[img_type]:The file type of band data,tif or png etc.")
          print("[out_path]:The filename of joined image.")
          print("Please note that these band data should have same height and width.")
          print("\nUsage example:")
          print("Tool_JoinBands.exe C:\\tif tif C:\\tifout\\joined.tif")
          os.system('pause')
      else:
          img_dir = sys.argv[1]
          img_type = sys.argv[2]
          out_path = sys.argv[3]
          paths, names, files = fun.findAllFiles(img_dir, img_type)
          bands_data = []
          # 对于tif文件,统一用gdal打开并输出为tif文件
          if img_type.endswith('tif') or img_type.endswith('TIF') or img_type.endswith('TIFF') or img_type.endswith(
                  'tiff'):
              for i in range(files.__len__()):
                  band_data = fun.readTifImage(files[i])
                  bands_data.extend(band_data)
                  print("joined " + (i + 1).__str__() + " bands.")
              print(bands_data.__len__().__str__() + " bands in total.")
              fun.writeTif(bands_data, out_path)
          # 对于所有其它类型的文件,如jpg、png等,统一用OpenCV处理
          else:
              for i in range(files.__len__()):
                  band_data = cv2.imread(files[i], cv2.IMREAD_GRAYSCALE)
                  bands_data.append(band_data)
              print("Open image success.")
              data = cv2.merge((bands_data[0], bands_data[1], bands_data[2]))
              cv2.imwrite(out_path, data)
              print("Save image success.")
  else:
      print("Unknown mode, input 'yourExeName.exe help' to get help information.")

这里简单介绍下代码。经过波段配准后,不同波段的影像已经实现了对齐,所以通过读取各波段影像然后利用GDAL叠加即可。

 

2.波段拆分

# coding=utf-8
import sys
import os
import cv2
import functions as fun
if __name__ == '__main__':
  if sys.argv.__len__() >= 2:
      if sys.argv[1] == 'help' or sys.argv[1] == 'HELP':
          print("Function description:")
          print("Separate and save different band data in one image file.")
          print("\nUsage instruction:")
          print("example.exe [img_path] [out_dir]")
          print("[img_path]:The filename of input image.")
          print("[output_dir]:The output dir for different band images.")
          print("\nUsage example:")
          print("Tool_SeparateBands.exe C:\\tif\\input.tif C:\\tifout")
          os.system('pause')
      else:
          img_path = sys.argv[1]
          output_dir = sys.argv[2]
          # 对于tif文件,统一用gdal打开并输出为tif文件
          if img_path.endswith('tif') or img_path.endswith('TIF') or img_path.endswith('TIFF') or img_path.endswith(
                  'tiff'):
              bands_data = fun.readTifImage(img_path)
              for i in range(bands_data.__len__()):
                  fun.writeTif([bands_data[i]], output_dir + os.path.sep + "band_" + i.__str__().zfill(2) + ".tif")
                  print("saved " + (i + 1).__str__() + "/" + bands_data.__len__().__str__())
          # 对于所有其它类型的文件,如jpg、png等,统一用OpenCV处理
          else:
              img = cv2.imread(img_path)
              print("Open image success.")
              band_b, band_g, band_r = cv2.split(img)
              cv2.imwrite(output_dir + os.path.sep + "band_b.png", band_b)
              cv2.imwrite(output_dir + os.path.sep + "band_g.png", band_g)
              cv2.imwrite(output_dir + os.path.sep + "band_r.png", band_r)
              print("Save image success.")
  else:
      print("Unknown mode, input 'yourExeName.exe help' to get help information.")

波段拆分与波段合并相反,直接读取一个多波段的tif影像,然后依次保存各波段数据为单独文件即可。

 

3.影像裁剪

在之前,要想实现影像裁剪的功能需要借助ENVI等软件,但是ENVI等打开比较慢,还要各种设置,比较麻烦。所以直接写了个脚本来方便地实现功能

# coding=utf-8
import sys
import cv2
import functions as fun
import os
if __name__ == '__main__':
  if sys.argv.__len__() >= 2:
      if sys.argv[1] == 'help' or sys.argv[1] == 'HELP':
          print("Function description:")
          print("Select and cut the ROI(region of interest) in a big image file.")
          print("\nUsage instruction:")
          print("example.exe [img_path] [out_path] [start_x] [start_y] [x_range] [y_range]")
          print("[img_path]:The filename of input image.")
          print("[out_path]:The filename of output image.")
          print("[start_x]:The x coordinate of ROI's left-top point in big image.")
          print("[start_y]:The y coordinate of ROI's left-top point in big image.")
          print("[x_range]:The range of ROI in x direction(width).")
          print("[y_range]:The range of ROI in y direction(height).")
          print("\nUsage example:")
          print("Tool_ResizeIMG.exe C:\\tif\\input.tif C:\\tifout\\roi.tif 100 200 3000 4000")
          os.system('pause')
      else:
          img_path = sys.argv[1]
          out_path = sys.argv[2]
          start_x = int(sys.argv[3])
          start_y = int(sys.argv[4])
          x_range = int(sys.argv[5])
          y_range = int(sys.argv[6])
          # 对于tif文件,统一用gdal打开并输出为tif文件
          if img_path.endswith('tif') or img_path.endswith('TIF') or img_path.endswith('TIFF') or img_path.endswith(
                  'tiff'):
              bands_data = fun.readTifImageWithWindow(img_path, start_x, start_y, x_range, y_range)
              fun.writeTif(bands_data, out_path)
          # 对于所有其它类型的文件,如jpg、png等,统一用OpenCV处理
          else:
              bands_data = cv2.imread(img_path)
              print("Open image success.")
              bands_data_roi = bands_data[start_y:start_y + y_range, start_x:start_x + x_range, :]
              cv2.imwrite(out_path, bands_data_roi)
              print("Save image success.")
  else:
      print("Unknown mode, input 'yourExeName.exe help' to get help information.")

影像裁剪实现也相对简单,就是通过设置读取影像范围即可实现对指定区域的裁剪。

 

4.批量影像裁剪

# coding=utf-8
import sys
import cv2
import functions as fun
import os
if __name__ == '__main__':
  if sys.argv.__len__() >= 2:
      if sys.argv[1] == 'help' or sys.argv[1] == 'HELP':
          print("Function description:")
          print("Select and cut the ROI(region of interest) in big image files(Batch mode).")
          print("\nUsage instruction:")
          print("example.exe [img_dir] [img_type] [output_dir] [start_x] [start_y] [x_range] [y_range]")
          print("[img_dir]:The input dir that contains band data.")
          print("[img_type]:The file type of band data,tif or png etc.")
          print("[output_dir]:The output dir for ROI images.")
          print("[start_x]:The x coordinate of ROI's left-top point in big image.")
          print("[start_y]:The y coordinate of ROI's left-top point in big image.")
          print("[x_range]:The range of ROI in x direction(width).")
          print("[y_range]:The range of ROI in y direction(height).")
          print("\nUsage example:")
          print("Tool_ResizeIMG_Batch.exe C:\\tif tif C:\\tifout 100 200 3000 4000")
          os.system('pause')
      else:
          img_dir = sys.argv[1]
          img_type = sys.argv[2]
          out_dir = sys.argv[3]
          start_x = int(sys.argv[4])
          start_y = int(sys.argv[5])
          x_range = int(sys.argv[6])
          y_range = int(sys.argv[7])
          paths, names, files = fun.findAllFiles(img_dir, img_type)
          # 对于tif文件,统一用gdal打开并输出为tif文件
          if img_type.endswith('tif') or img_type.endswith('TIF') or img_type.endswith('TIFF') or img_type.endswith(
                  'tiff'):
              for i in range(files.__len__()):
                  bands_data = fun.readTifImageWithWindow(files[i], start_x, start_y, x_range, y_range)
                  fun.writeTif(bands_data, out_dir + os.path.sep + names[i][:names[i].rfind('.')] + "_cut.tif")
                  print("cutting " + (i + 1).__str__() + "/" + files.__len__().__str__())
              print('cut finished.')
          # 对于所有其它类型的文件,如jpg、png等,统一用OpenCV处理
          else:
              for i in range(files.__len__()):
                  bands_data = cv2.imread(files[i])
                  bands_data_roi = bands_data[start_y:start_y + y_range, start_x:start_x + x_range, :]
                  cv2.imwrite(out_dir + os.path.sep + "band_" + (i + 1).__str__().zfill(2) + ".jpg", bands_data_roi)
                  print("cutting " + (i + 1).__str__() + "/" + files.__len__())
              print('cut finished.')
  else:
      print("Unknown mode, input 'yourExeName.exe help' to get help information.")

相比于单张影像裁剪,批量裁剪就是多加了个循环,实现了批量操作,也比较简单。

关于Python高光谱遥感影像处理问题详细分析讲解的文章就介绍至此,更多相关Python高光谱遥感影像处理内容请搜索编程宝库以前的文章,希望以后支持编程宝库

 Tkinter复选框Checkbutton是否被选中判断定义一个BooleanVar型数据进行获取复选框状态。>>> import tki ...