Python使用matplotlib创建Gif动图
1、Matplotlib 简介
数据可视化有助于更有效地讲述有关数据的故事并使其易于呈现。有时很难用静态图表来解释数据的变化,为此,我们将讨论matplotlib提供的名为“Animation”的动画库之一。以下是要涵盖的主题。
最流行的Python二维绘图库是Matplolib。大多数人从Matplotlib开始他们的探索性数据分析之旅。它可以轻松创建绘图、直方图、条形图、散点图等。与Pandas和Seaborn一样,它可以创建更复杂的视觉效果。
但是也有一些缺陷:
Matplotlib的命令式 API,通常过于冗长。
有时糟糕的风格默认值。
对网络和交互式图表的支持不佳。
对于大型和复杂的数据通常很慢。
2、绘制动画正弦和余弦波
参考代码如下
import matplotlib.animation as anime import matplotlib.pyplot as plt import numpy as np import pandas as pd fig = plt.figure() l, = plt.plot([], [], 'k-') l2, = plt.plot([], [], 'm--') p1, = plt.plot([], [], 'ko') p2, = plt.plot([], [], 'mo') plt.xlabel('xlabel') plt.ylabel('ylabel') plt.title('title') plt.xlim(-5, 5) plt.ylim(-5, 5) def func(x): return np.sin(x) * 3 def func2(x): return np.cos(x) * 3 metadata = dict(title="Movie", artist="sourabh") writer = anime.PillowWriter(fps=15, metadata=metadata) xlist = [] ylist = [] ylist2 = [] xlist2 = [] with writer.saving(fig, "sin+cosinewave.gif", 100): for xval in np.linspace(-5, 5, 100): xlist.append(xval) ylist.append(func(xval)) l.set_data(xlist, ylist) l2.set_data(xlist2, ylist2) p1.set_data(xval, func(xval)) writer.grab_frame() xlist2.append(xval) ylist2.append(func2(xval)) p2.set_data(xval, func2(xval))
动画效果图如下。
3、绘制曲面图
参考代码如下,这段代码会运行一段时间。
import matplotlib from matplotlib import cm import matplotlib.animation as anime import matplotlib.pyplot as plt import numpy as np import pandas as pd np.random.seed(29680801) fig, ax = plt.subplots(subplot_kw=dict(projection='3d')) plt.xlim(-5, 5) plt.ylim(-5, 5) metadata = dict(title="Movie", artist="sourabh") writer = anime.PillowWriter(fps=15, metadata=metadata) def func(x, y, r, t): return np.cos(r / 2 + t) * np.exp(-np.square(r) / 50) xdata = np.linspace(-10, 10, 1000) ydata = np.linspace(-10, 10, 1000) x_list, y_list = np.meshgrid(xdata, ydata) r_list = np.sqrt(np.square(x_list) + np.square(y_list)) with writer.saving(fig, "exp3d.gif", 100): for t in np.linspace(0, 20, 160): z = func(x_list, y_list, r_list, t) ax.set_zlim(-1, 1) ax.plot_surface(x_list, y_list, z, cmap=cm.viridis) writer.grab_frame() plt.cla()
动画效果如下
4、绘制回归图
参考代码如下
import matplotlib from matplotlib import cm import matplotlib.animation as anime import matplotlib.pyplot as plt import numpy as np import pandas as pd np.random.seed(23680545) metadata = dict(title="Movie", artist="sourabh") writer = anime.PillowWriter(fps=15, metadata=metadata) fig = plt.figure() plt.xlim(-8, 8) plt.ylim(-8, 8) def func(x): return x * 1.2 + 0.1 + np.random.normal(0, 2, x.shape) x = np.random.uniform(-7, 7, 10) x = np.sort(x) y = func(x) coeff = np.polyfit(x, y, 1) print(coeff) xline = np.linspace(-6, 6, 40) yline = np.polyval(coeff, xline) lPnt, = plt.plot(x, y, 'o') l, = plt.plot(xline, yline, 'k-', linewidth=3) plt.show() fig = plt.figure() plt.xlim(-10, 10) plt.ylim(-10, 10) lPnt, = plt.plot([], [], 'o') l, = plt.plot([], [], 'k-', linewidth=3) x_List = [] y_List = [] x_pnt = [] y_pnt = [] with writer.saving(fig, "fitPlot.gif", 100): for xval, yval in zip(x, y): x_pnt.append(xval) y_pnt.append(yval) lPnt.set_data(x_pnt, y_pnt) l.set_data(x_List, y_List) writer.grab_frame() writer.grab_frame() for x_val, y_val in zip(xline, xline): x_List.append(x_val) y_List.append(y_val) lPnt.set_data(x_pnt, y_pnt) l.set_data(x_List, y_List) writer.grab_frame() for i in range(10): writer.grab_frame()
效果图如下
关于Python使用matplotlib创建Gif动图的文章就介绍至此,更多相关Python创建Gif动图内容请搜索编程宝库以前的文章,希望以后支持编程宝库!
目前Github Copilot不是完全公开的,需要自己进入copilot官方网站进行申请,我申请下来是花了两天左右的时间。 1.简介微软与OpenAI共同推出了一款AI编程工具Gi ...