Python方块连接游戏

 

导语

《我的世界》是一款自由度极高的游戏,每个新存档的开启,就像是作为造物主的玩家在虚拟空间开辟了一个全新的宇宙。

图片

方块连接世界,云游大好河山。

图片

国庆不是回家了一趟嘛?隔壁家的小胖墩在跟家里的小孩子一起玩手机,一起下载 了这款《我的世界》的游戏,玩儿的可是非常起劲儿了,建房子打怪,别说那房子的模型着实蛮惊艳的哈!

至少我作为一个没玩过的人来说确实是很牛逼了~

至少我做不来哈哈哈!这游戏看着怪好玩儿的撒,小编没忍住,毕竟长假嘛,怎得找点儿事情可做!

于是――今天木木子带大家一起编写的Python 1.0初级版本《我的世界》就要隆重出场了,期不期待吖~

 

正文

(1)《我是世界》游戏规则。

移动―前进:W,后退:S,向左:A,向右:D,环顾四周:鼠标,跳起:空格键,切换飞行模式:Tab。

选择建筑材料―砖:1,草:2,沙子:3,删除建筑:鼠标左键单击,创建建筑块:鼠标右键单击。

ESC退出程序。

(2)主要程序代码。

'''
主题:
我的世界1.0版本
'''
from __future__ import division

import sys
import math
import random
import time

from collections import deque
from pyglet import image
from pyglet.gl import *
from pyglet.graphics import TextureGroup
from pyglet.window import key, mouse

TICKS_PER_SEC = 60

# Size of sectors used to ease block loading.
SECTOR_SIZE = 16

WALKING_SPEED = 5
FLYING_SPEED = 15

GRAVITY = 20.0
MAX_JUMP_HEIGHT = 1.0 # About the height of a block.
# To derive the formula for calculating jump speed, first solve
#    v_t = v_0 + a * t
# for the time at which you achieve maximum height, where a is the acceleration
# due to gravity and v_t = 0. This gives:
#    t = - v_0 / a
# Use t and the desired MAX_JUMP_HEIGHT to solve for v_0 (jump speed) in
#    s = s_0 + v_0 * t + (a * t^2) / 2
JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT)
TERMINAL_VELOCITY = 50

PLAYER_HEIGHT = 2

if sys.version_info[0] >= 3:
  xrange = range

def cube_vertices(x, y, z, n):
  """ Return the vertices of the cube at position x, y, z with size 2*n.
  """
  return [
      x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n,  # top
      x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n,  # bottom
      x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n,  # left
      x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n,  # right
      x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n,  # front
      x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n,  # back
  ]


def tex_coord(x, y, n=4):
  """ Return the bounding vertices of the texture square.
  """
  m = 1.0 / n
  dx = x * m
  dy = y * m
  return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m


def tex_coords(top, bottom, side):
  """ Return a list of the texture squares for the top, bottom and side.
  """
  top = tex_coord(*top)
  bottom = tex_coord(*bottom)
  side = tex_coord(*side)
  result = []
  result.extend(top)
  result.extend(bottom)
  result.extend(side * 4)
  return result


TEXTURE_PATH = 'texture.png'

GRASS = tex_coords((1, 0), (0, 1), (0, 0))
SAND = tex_coords((1, 1), (1, 1), (1, 1))
BRICK = tex_coords((2, 0), (2, 0), (2, 0))
STONE = tex_coords((2, 1), (2, 1), (2, 1))

FACES = [
  ( 0, 1, 0),
  ( 0,-1, 0),
  (-1, 0, 0),
  ( 1, 0, 0),
  ( 0, 0, 1),
  ( 0, 0,-1),
]


def normalize(position):
  """ Accepts `position` of arbitrary precision and returns the block
  containing that position.
  Parameters
  ----------
  position : tuple of len 3
  Returns
  -------
  block_position : tuple of ints of len 3
  """
  x, y, z = position
  x, y, z = (int(round(x)), int(round(y)), int(round(z)))
  return (x, y, z)


def sectorize(position):
  """ Returns a tuple representing the sector for the given `position`.
  Parameters
  ----------
  position : tuple of len 3
  Returns
  -------
  sector : tuple of len 3
  """
  x, y, z = normalize(position)
  x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE
  return (x, 0, z)


class Model(object):

  def __init__(self):

      # A Batch is a collection of vertex lists for batched rendering.
      self.batch = pyglet.graphics.Batch()

      # A TextureGroup manages an OpenGL texture.
      self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture())

      # A mapping from position to the texture of the block at that position.
      # This defines all the blocks that are currently in the world.
      self.world = {}

      # Same mapping as `world` but only contains blocks that are shown.
      self.shown = {}

      # Mapping from position to a pyglet `VertextList` for all shown blocks.
      self._shown = {}

      # Mapping from sector to a list of positions inside that sector.
      self.sectors = {}

      # Simple function queue implementation. The queue is populated with
      # _show_block() and _hide_block() calls
      self.queue = deque()

      self._initialize()

  def _initialize(self):
      """ Initialize the world by placing all the blocks.
      """
      n = 80  # 1/2 width and height of world
      s = 1  # step size
      y = 0  # initial y height
      for x in xrange(-n, n + 1, s):
          for z in xrange(-n, n + 1, s):
              # create a layer stone an grass everywhere.
              self.add_block((x, y - 2, z), GRASS, immediate=False)
              self.add_block((x, y - 3, z), STONE, immediate=False)
              if x in (-n, n) or z in (-n, n):
                  # create outer walls.
                  for dy in xrange(-2, 3):
                      self.add_block((x, y + dy, z), STONE, immediate=False)

      # generate the hills randomly
      o = n - 10
      for _ in xrange(120):
          a = random.randint(-o, o)  # x position of the hill
          b = random.randint(-o, o)  # z position of the hill
          c = -1  # base of the hill
          h = random.randint(1, 6)  # height of the hill
          s = random.randint(4, 8)  # 2 * s is the side length of the hill
          d = 1  # how quickly to taper off the hills
          t = random.choice([GRASS, SAND, BRICK])
          for y in xrange(c, c + h):
              for x in xrange(a - s, a + s + 1):
                  for z in xrange(b - s, b + s + 1):
                      if (x - a) ** 2 + (z - b) ** 2 > (s + 1) ** 2:
                          continue
                      if (x - 0) ** 2 + (z - 0) ** 2 < 5 ** 2:
                          continue
                      self.add_block((x, y, z), t, immediate=False)
              s -= d  # decrement side lenth so hills taper off

  def hit_test(self, position, vector, max_distance=8):
      """ Line of sight search from current position. If a block is
      intersected it is returned, along with the block previously in the line
      of sight. If no block is found, return None, None.
      Parameters
      ----------
      position : tuple of len 3
          The (x, y, z) position to check visibility from.
      vector : tuple of len 3
          The line of sight vector.
      max_distance : int
          How many blocks away to search for a hit.
      """
      m = 8
      x, y, z = position
      dx, dy, dz = vector
      previous = None
      for _ in xrange(max_distance * m):
          key = normalize((x, y, z))
          if key != previous and key in self.world:
              return key, previous
          previous = key
          x, y, z = x + dx / m, y + dy / m, z + dz / m
      return None, None

  def exposed(self, position):
      """ Returns False is given `position` is surrounded on all 6 sides by
      blocks, True otherwise.
      """
      x, y, z = position
      for dx, dy, dz in FACES:
          if (x + dx, y + dy, z + dz) not in self.world:
              return True
      return False

  def add_block(self, position, texture, immediate=True):
      """ Add a block with the given `texture` and `position` to the world.
      Parameters
      ----------
      position : tuple of len 3
          The (x, y, z) position of the block to add.
      texture : list of len 3
          The coordinates of the texture squares. Use `tex_coords()` to
          generate.
      immediate : bool
          Whether or not to draw the block immediately.
      """
      if position in self.world:
          self.remove_block(position, immediate)
      self.world[position] = texture
      self.sectors.setdefault(sectorize(position), []).append(position)
      if immediate:
          if self.exposed(position):
              self.show_block(position)
          self.check_neighbors(position)

  def remove_block(self, position, immediate=True):
      """ Remove the block at the given `position`.
      Parameters
      ----------
      position : tuple of len 3
          The (x, y, z) position of the block to remove.
      immediate : bool
          Whether or not to immediately remove block from canvas.
      """
      del self.world[position]
      self.sectors[sectorize(position)].remove(position)
      if immediate:
          if position in self.shown:
              self.hide_block(position)
          self.check_neighbors(position)

  def check_neighbors(self, position):
      """ Check all blocks surrounding `position` and ensure their visual
      state is current. This means hiding blocks that are not exposed and
      ensuring that all exposed blocks are shown. Usually used after a block
      is added or removed.
      """
      x, y, z = position
      for dx, dy, dz in FACES:
          key = (x + dx, y + dy, z + dz)
          if key not in self.world:
              continue
          if self.exposed(key):
              if key not in self.shown:
                  self.show_block(key)
          else:
              if key in self.shown:
                  self.hide_block(key)

  def show_block(self, position, immediate=True):
      """ Show the block at the given `position`. This method assumes the
      block has already been added with add_block()
      Parameters
      ----------
      position : tuple of len 3
          The (x, y, z) position of the block to show.
      immediate : bool
          Whether or not to show the block immediately.
      """
      texture = self.world[position]
      self.shown[position] = texture
      if immediate:
          self._show_block(position, texture)
      else:
          self._enqueue(self._show_block, position, texture)

  def _show_block(self, position, texture):
      """ Private implementation of the `show_block()` method.
      Parameters
      ----------
      position : tuple of len 3
          The (x, y, z) position of the block to show.
      texture : list of len 3
          The coordinates of the texture squares. Use `tex_coords()` to
          generate.
      """
      x, y, z = position
      vertex_data = cube_vertices(x, y, z, 0.5)
      texture_data = list(texture)
      # create vertex list
      # FIXME Maybe `add_indexed()` should be used instead
      self._shown[position] = self.batch.add(24, GL_QUADS, self.group,
          ('v3f/static', vertex_data),
          ('t2f/static', texture_data))

  def hide_block(self, position, immediate=True):
      """ Hide the block at the given `position`. Hiding does not remove the
      block from the world.
      Parameters
      ----------
      position : tuple of len 3
          The (x, y, z) position of the block to hide.
      immediate : bool
          Whether or not to immediately remove the block from the canvas.
      """
      self.shown.pop(position)
      if immediate:
          self._hide_block(position)
      else:
          self._enqueue(self._hide_block, position)

  def _hide_block(self, position):
      """ Private implementation of the 'hide_block()` method.
      """
      self._shown.pop(position).delete()

  def show_sector(self, sector):
      """ Ensure all blocks in the given sector that should be shown are
      drawn to the canvas.
      """
      for position in self.sectors.get(sector, []):
          if position not in self.shown and self.exposed(position):
              self.show_block(position, False)

  def hide_sector(self, sector):
      """ Ensure all blocks in the given sector that should be hidden are
      removed from the canvas.
      """
      for position in self.sectors.get(sector, []):
          if position in self.shown:
              self.hide_block(position, False)

  def change_sectors(self, before, after):
      """ Move from sector `before` to sector `after`. A sector is a
      contiguous x, y sub-region of world. Sectors are used to speed up
      world rendering.
      """
      before_set = set()
      after_set = set()
      pad = 4
      for dx in xrange(-pad, pad + 1):
          for dy in [0]:  # xrange(-pad, pad + 1):
              for dz in xrange(-pad, pad + 1):
                  if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2:
                      continue
                  if before:
                      x, y, z = before
                      before_set.add((x + dx, y + dy, z + dz))
                  if after:
                      x, y, z = after
                      after_set.add((x + dx, y + dy, z + dz))
      show = after_set - before_set
      hide = before_set - after_set
      for sector in show:
          self.show_sector(sector)
      for sector in hide:
          self.hide_sector(sector)

  def _enqueue(self, func, *args):
      """ Add `func` to the internal queue.
      """
      self.queue.append((func, args))

  def _dequeue(self):
      """ Pop the top function from the internal queue and call it.
      """
      func, args = self.queue.popleft()
      func(*args)

  def process_queue(self):
      """ Process the entire queue while taking periodic breaks. This allows
      the game loop to run smoothly. The queue contains calls to
      _show_block() and _hide_block() so this method should be called if
      add_block() or remove_block() was called with immediate=False
      """
      start = time.clock()
      while self.queue and time.clock() - start < 1.0 / TICKS_PER_SEC:
          self._dequeue()

  def process_entire_queue(self):
      """ Process the entire queue with no breaks.
      """
      while self.queue:
          self._dequeue()


class Window(pyglet.window.Window):

  def __init__(self, *args, **kwargs):
      super(Window, self).__init__(*args, **kwargs)

      # Whether or not the window exclusively captures the mouse.
      self.exclusive = False

      # When flying gravity has no effect and speed is increased.
      self.flying = False

      # Strafing is moving lateral to the direction you are facing,
      # e.g. moving to the left or right while continuing to face forward.
      #
      # First element is -1 when moving forward, 1 when moving back, and 0
      # otherwise. The second element is -1 when moving left, 1 when moving
      # right, and 0 otherwise.
      self.strafe = [0, 0]

      # Current (x, y, z) position in the world, specified with floats. Note
      # that, perhaps unlike in math class, the y-axis is the vertical axis.
      self.position = (0, 0, 0)

      # First element is rotation of the player in the x-z plane (ground
      # plane) measured from the z-axis down. The second is the rotation
      # angle from the ground plane up. Rotation is in degrees.
      #
      # The vertical plane rotation ranges from -90 (looking straight down) to
      # 90 (looking straight up). The horizontal rotation range is unbounded.
      self.rotation = (0, 0)

      # Which sector the player is currently in.
      self.sector = None

      # The crosshairs at the center of the screen.
      self.reticle = None

      # Velocity in the y (upward) direction.
      self.dy = 0

      # A list of blocks the player can place. Hit num keys to cycle.
      self.inventory = [BRICK, GRASS, SAND]

      # The current block the user can place. Hit num keys to cycle.
      self.block = self.inventory[0]

      # Convenience list of num keys.
      self.num_keys = [
          key._1, key._2, key._3, key._4, key._5,
          key._6, key._7, key._8, key._9, key._0]

      # Instance of the model that handles the world.
      self.model = Model()

      # The label that is displayed in the top left of the canvas.
      self.label = pyglet.text.Label('', font_name='Arial', font_size=18,
          x=10, y=self.height - 10, anchor_x='left', anchor_y='top',
          color=(0, 0, 0, 255))

      # This call schedules the `update()` method to be called
      # TICKS_PER_SEC. This is the main game event loop.
      pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC)

  def set_exclusive_mouse(self, exclusive):
      """ If `exclusive` is True, the game will capture the mouse, if False
      the game will ignore the mouse.
      """
      super(Window, self).set_exclusive_mouse(exclusive)
      self.exclusive = exclusive

  def get_sight_vector(self):
      """ Returns the current line of sight vector indicating the direction
      the player is looking.
      """
      x, y = self.rotation
      # y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and
      # is 1 when looking ahead parallel to the ground and 0 when looking
      # straight up or down.
      m = math.cos(math.radians(y))
      # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when
      # looking straight up.
      dy = math.sin(math.radians(y))
      dx = math.cos(math.radians(x - 90)) * m
      dz = math.sin(math.radians(x - 90)) * m
      return (dx, dy, dz)

  def get_motion_vector(self):
      """ Returns the current motion vector indicating the velocity of the
      player.
      Returns
      -------
      vector : tuple of len 3
          Tuple containing the velocity in x, y, and z respectively.
      """
      if any(self.strafe):
          x, y = self.rotation
          strafe = math.degrees(math.atan2(*self.strafe))
          y_angle = math.radians(y)
          x_angle = math.radians(x + strafe)
          if self.flying:
              m = math.cos(y_angle)
              dy = math.sin(y_angle)
              if self.strafe[1]:
                  # Moving left or right.
                  dy = 0.0
                  m = 1
              if self.strafe[0] > 0:
                  # Moving backwards.
                  dy *= -1
              # When you are flying up or down, you have less left and right
              # motion.
              dx = math.cos(x_angle) * m
              dz = math.sin(x_angle) * m
          else:
              dy = 0.0
              dx = math.cos(x_angle)
              dz = math.sin(x_angle)
      else:
          dy = 0.0
          dx = 0.0
          dz = 0.0
      return (dx, dy, dz)

  def update(self, dt):
      """ This method is scheduled to be called repeatedly by the pyglet
      clock.
      Parameters
      ----------
      dt : float
          The change in time since the last call.
      """
      self.model.process_queue()
      sector = sectorize(self.position)
      if sector != self.sector:
          self.model.change_sectors(self.sector, sector)
          if self.sector is None:
              self.model.process_entire_queue()
          self.sector = sector
      m = 8
      dt = min(dt, 0.2)
      for _ in xrange(m):
          self._update(dt / m)

  def _update(self, dt):
      """ Private implementation of the `update()` method. This is where most
      of the motion logic lives, along with gravity and collision detection.
      Parameters
      ----------
      dt : float
          The change in time since the last call.
      """
      # walking
      speed = FLYING_SPEED if self.flying else WALKING_SPEED
      d = dt * speed # distance covered this tick.
      dx, dy, dz = self.get_motion_vector()
      # New position in space, before accounting for gravity.
      dx, dy, dz = dx * d, dy * d, dz * d
      # gravity
      if not self.flying:
          # Update your vertical speed: if you are falling, speed up until you
          # hit terminal velocity; if you are jumping, slow down until you
          # start falling.
          self.dy -= dt * GRAVITY
          self.dy = max(self.dy, -TERMINAL_VELOCITY)
          dy += self.dy * dt
      # collisions
      x, y, z = self.position
      x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT)
      self.position = (x, y, z)

  def collide(self, position, height):
      """ Checks to see if the player at the given `position` and `height`
      is colliding with any blocks in the world.
      Parameters
      ----------
      position : tuple of len 3
          The (x, y, z) position to check for collisions at.
      height : int or float
          The height of the player.
      Returns
      -------
      position : tuple of len 3
          The new position of the player taking into account collisions.
      """
      # How much overlap with a dimension of a surrounding block you need to
      # have to count as a collision. If 0, touching terrain at all counts as
      # a collision. If .49, you sink into the ground, as if walking through
      # tall grass. If >= .5, you'll fall through the ground.
      pad = 0.25
      p = list(position)
      np = normalize(position)
      for face in FACES:  # check all surrounding blocks
          for i in xrange(3):  # check each dimension independently
              if not face[i]:
                  continue
              # How much overlap you have with this dimension.
              d = (p[i] - np[i]) * face[i]
              if d < pad:
                  continue
              for dy in xrange(height):  # check each height
                  op = list(np)
                  op[1] -= dy
                  op[i] += face[i]
                  if tuple(op) not in self.model.world:
                      continue
                  p[i] -= (d - pad) * face[i]
                  if face == (0, -1, 0) or face == (0, 1, 0):
                      # You are colliding with the ground or ceiling, so stop
                      # falling / rising.
                      self.dy = 0
                  break
      return tuple(p)

  def on_mouse_press(self, x, y, button, modifiers):
      """ Called when a mouse button is pressed. See pyglet docs for button
      amd modifier mappings.
      Parameters
      ----------
      x, y : int
          The coordinates of the mouse click. Always center of the screen if
          the mouse is captured.
      button : int
          Number representing mouse button that was clicked. 1 = left button,
          4 = right button.
      modifiers : int
          Number representing any modifying keys that were pressed when the
          mouse button was clicked.
      """
      if self.exclusive:
          vector = self.get_sight_vector()
          block, previous = self.model.hit_test(self.position, vector)
          if (button == mouse.RIGHT) or \
                  ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)):
              # ON OSX, control + left click = right click.
              if previous:
                  self.model.add_block(previous, self.block)
          elif button == pyglet.window.mouse.LEFT and block:
              texture = self.model.world[block]
              if texture != STONE:
                  self.model.remove_block(block)
      else:
          self.set_exclusive_mouse(True)

  def on_mouse_motion(self, x, y, dx, dy):
      """ Called when the player moves the mouse.
      Parameters
      ----------
      x, y : int
          The coordinates of the mouse click. Always center of the screen if
          the mouse is captured.
      dx, dy : float
          The movement of the mouse.
      """
      if self.exclusive:
          m = 0.15
          x, y = self.rotation
          x, y = x + dx * m, y + dy * m
          y = max(-90, min(90, y))
          self.rotation = (x, y)

  def on_key_press(self, symbol, modifiers):
      """ Called when the player presses a key. See pyglet docs for key
      mappings.
      Parameters
      ----------
      symbol : int
          Number representing the key that was pressed.
      modifiers : int
          Number representing any modifying keys that were pressed.
      """
      if symbol == key.W:
          self.strafe[0] -= 1
      elif symbol == key.S:
          self.strafe[0] += 1
      elif symbol == key.A:
          self.strafe[1] -= 1
      elif symbol == key.D:
          self.strafe[1] += 1
      elif symbol == key.SPACE:
          if self.dy == 0:
              self.dy = JUMP_SPEED
      elif symbol == key.ESCAPE:
          self.set_exclusive_mouse(False)
      elif symbol == key.TAB:
          self.flying = not self.flying
      elif symbol in self.num_keys:
          index = (symbol - self.num_keys[0]) % len(self.inventory)
          self.block = self.inventory[index]

  def on_key_release(self, symbol, modifiers):
      """ Called when the player releases a key. See pyglet docs for key
      mappings.
      Parameters
      ----------
      symbol : int
          Number representing the key that was pressed.
      modifiers : int
          Number representing any modifying keys that were pressed.
      """
      if symbol == key.W:
          self.strafe[0] += 1
      elif symbol == key.S:
          self.strafe[0] -= 1
      elif symbol == key.A:
          self.strafe[1] += 1
      elif symbol == key.D:
          self.strafe[1] -= 1

  def on_resize(self, width, height):
      """ Called when the window is resized to a new `width` and `height`.
      """
      # label
      self.label.y = height - 10
      # reticle
      if self.reticle:
          self.reticle.delete()
      x, y = self.width // 2, self.height // 2
      n = 10
      self.reticle = pyglet.graphics.vertex_list(4,
          ('v2i', (x - n, y, x + n, y, x, y - n, x, y + n))
      )

  def set_2d(self):
      """ Configure OpenGL to draw in 2d.
      """
      width, height = self.get_size()
      glDisable(GL_DEPTH_TEST)
      viewport = self.get_viewport_size()
      glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
      glMatrixMode(GL_PROJECTION)
      glLoadIdentity()
      glOrtho(0, max(1, width), 0, max(1, height), -1, 1)
      glMatrixMode(GL_MODELVIEW)
      glLoadIdentity()

  def set_3d(self):
      """ Configure OpenGL to draw in 3d.
      """
      width, height = self.get_size()
      glEnable(GL_DEPTH_TEST)
      viewport = self.get_viewport_size()
      glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
      glMatrixMode(GL_PROJECTION)
      glLoadIdentity()
      gluPerspective(65.0, width / float(height), 0.1, 60.0)
      glMatrixMode(GL_MODELVIEW)
      glLoadIdentity()
      x, y = self.rotation
      glRotatef(x, 0, 1, 0)
      glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x)))
      x, y, z = self.position
      glTranslatef(-x, -y, -z)

  def on_draw(self):
      """ Called by pyglet to draw the canvas.
      """
      self.clear()
      self.set_3d()
      glColor3d(1, 1, 1)
      self.model.batch.draw()
      self.draw_focused_block()
      self.set_2d()
      self.draw_label()
      self.draw_reticle()

  def draw_focused_block(self):
      """ Draw black edges around the block that is currently under the
      crosshairs.
      """
      vector = self.get_sight_vector()
      block = self.model.hit_test(self.position, vector)[0]
      if block:
          x, y, z = block
          vertex_data = cube_vertices(x, y, z, 0.51)
          glColor3d(0, 0, 0)
          glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)
          pyglet.graphics.draw(24, GL_QUADS, ('v3f/static', vertex_data))
          glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)

  def draw_label(self):
      """ Draw the label in the top left of the screen.
      """
      x, y, z = self.position
      self.label.text = '%02d (%.2f, %.2f, %.2f) %d / %d' % (
          pyglet.clock.get_fps(), x, y, z,
          len(self.model._shown), len(self.model.world))
      self.label.draw()

  def draw_reticle(self):
      """ Draw the crosshairs in the center of the screen.
      """
      glColor3d(0, 0, 0)
      self.reticle.draw(GL_LINES)


def setup_fog():
  """ Configure the OpenGL fog properties.
  """
  # Enable fog. Fog "blends a fog color with each rasterized pixel fragment's
  # post-texturing color."
  glEnable(GL_FOG)
  # Set the fog color.
  glFogfv(GL_FOG_COLOR, (GLfloat * 4)(0.5, 0.69, 1.0, 1))
  # Say we have no preference between rendering speed and quality.
  glHint(GL_FOG_HINT, GL_DONT_CARE)
  # Specify the equation used to compute the blending factor.
  glFogi(GL_FOG_MODE, GL_LINEAR)
  # How close and far away fog starts and ends. The closer the start and end,
  # the denser the fog in the fog range.
  glFogf(GL_FOG_START, 20.0)
  glFogf(GL_FOG_END, 60.0)


def setup():
  """ Basic OpenGL configuration.
  """
  # Set the color of "clear", i.e. the sky, in rgba.
  glClearColor(0.5, 0.69, 1.0, 1)
  # Enable culling (not rendering) of back-facing facets -- facets that aren't
  # visible to you.
  glEnable(GL_CULL_FACE)
  # Set the texture minification/magnification function to GL_NEAREST (nearest
  # in Manhattan distance) to the specified texture coordinates. GL_NEAREST
  # "is generally faster than GL_LINEAR, but it can produce textured 图片
  # with sharper edges because the transition between texture elements is not
  # as smooth."
  glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)
  glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)
  setup_fog()


def main():
  window = Window(width=1800, height=1600, caption='Pyglet', resizable=True)
  # Hide the mouse cursor and prevent the mouse from leaving the window.
  window.set_exclusive_mouse(True)
  setup()
  pyglet.app.run()


if __name__ == '__main__':
  main()

(3)效果图如下。

正常的截图:

飞行模式下的截图:在天上越飞越远!幸好我手速比较快,不然看不到这截图了!

 

​总结

总的来说这初级版本的话很多毛病的哈!哈哈哈哈~大家拿到代码了可以自己修改修改哦~

等一个大佬优化这款Python的我的世界!

你们的支持是我最大的动力!!mua 欢迎大家阅读往期的文章哦~

关于Python著名游戏实战之方块连接 我的世界的文章就介绍至此,更多相关Python 我的世界内容请搜索编程宝库以前的文章,希望大家多多支持编程宝库

 导语哈喽!哈喽!我是木木子,最近沉迷整蛊这种类型的代码,特别有趣好玩!虽然踩中了特别多的坑,但是越玩越上瘾呀!这里整理了蛮多整蛊的代码,好东西就是需要分享的嘛~每周一招维护友谊的小秘诀,欢迎大家来到木 ...