Python可视化Matplotlib散点图scatter()用法详解

散点图是数据分析中非常常用的图形。用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。

特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律)

Matplotlib 中绘制散点图的函数为 scatter() ,使用语法如下:

matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, *, data=None, **kwargs)

 

散点图基本用法

import matplotlib.pyplot as plt
import random

# 0.准备数据
x = range(60)
y_jiangsu = [random.uniform(15, 25) for i in x]
y_beijing = [random.uniform(5,18) for i in x]

# 1.创建画布
plt.figure(figsize=(20, 8), dpi=100)

# 2.绘制图像
plt.scatter(x,y_jiangsu, s=100, c='deeppink', marker='o', label = "江苏")
plt.scatter(x,y_beijing, s=100, c='darkblue', marker='+', label = "北京")

# 2.1 刻度显示
plt.xticks(x[::5], x_ticks_label[::5])
plt.yticks(y_ticks[::5])

# 2.2 添加网格显示
plt.grid(True, linestyle="--", alpha=0.5)

# 2.3 添加描述信息
plt.xlabel("时间", fontsize=15)
plt.ylabel("温度", fontsize=15)
plt.title("中午11点--12点某城市温度变化图", fontsize=20)

# 2.4 图像保存
plt.savefig("./test.png")

# 2.5 添加图例
plt.legend(loc="best")

# 3.图像显示
plt.show()

在这里插入图片描述

注:如果没有解决过中文问题的话,绘制的图像会出现中文或者部分符号无法显示的问题。在之前的matplotlib系列文章中已经讲过解决方法了,读者可以自行查找。

创作不易,白嫖不好,各位的支持和认可,就是我创作的最大动力,我们下篇文章见!

Dragon少年 | 文

如果本篇博客有任何错误,请批评指教,不胜感激 !

以上就是Python可视化Matplotlib散点图scatter()用法详解的详细内容,更多关于Python可视化Matplotlib的资料请关注编程宝库其它相关文章!

 1.字典的介绍字典是另一种可变类型,且可存储任意类型对象。字典的每个键值 key=>value 对用冒号 : 分割,每个对之间用逗号(,)分割,整个字典包括在花括号 {} 中 , ...