Go中Channel发送和接收操作指南

 

前言

先来看一道面试题:

对已经关闭的 chan 进行读写,会怎么样?为什么?

在上一篇学习 Go 协程的文章中,知道 go 关键字可以用来开启一个 goroutine 进行任务处理,但多个任务之间如果需要通信,就需要用到通道(channel)了。

 

一、Channel的定义

声明并初始化一个通道,可以使用 Go 语言的内建函数 make,同时指定该通道类型的元素类型,下面声明了一个 chan int 类型的 channel:

ch := make(chan int)

 

二、Channel的操作

发送(写):发送操作包括了“复制元素值”和“放置副本到通道内部”这两个步骤。即:进入通道的并不是操作符右边的那个元素值,而是它的副本。

ch := make(chan int)

// write to channel
ch <- x

接收(读):接收操作包含了“复制通道内的元素值”、“放置副本到接收方”、“删掉原值”三个步骤。

ch := make(chan int)

// read from channel
x <- ch

// another way to read
x = <- ch

关闭:关闭 channel 会产生一个广播机制,所有向 channel 读取消息的 goroutine 都会收到消息。

ch := make(chan int)

close(ch)

从一个已关闭的 channel 中读取消息永远不会阻塞,并且会返回一个为 false 的 ok-idiom,可以用它来判断 channel 是否关闭:

v, ok := <-ch

如果 ok 是false,表明接收的 v 是产生的零值,这个 channel 被关闭了或者为空。

 

三、Channel发送和接收操作的特点

  1. 一个通道相当于一个先进先出(FIFO)的队列:也就是说,通道中的各个元素值都是严格地按照发送的顺序排列的,先被发送通道的元素值一定会先被接收。
  2. 对于同一个通道,发送操作之间和接收操作之间是互斥的:同一时刻,对同一通道发送多个元素,直到这个元素值被完全复制进该通道之后,其他针对该通道的发送操作才可能被执行。接收也是如此。
  3. 发送操作和接收操作中,对元素值的处理是不可分割的:前面我们知道发送一个值到通道,是先复制值,再将该副本移动到通道内部,“不可分割”指的是发送操作要么还没复制元素值,要么已经复制完毕,绝不会出现只复制了一部分的情况。接收也是同理,在准备好元素值的副本之后,一定会删除掉通道中的原值,绝不会出现通道中仍有残留的情况。
  4. 发送操作和接收操作在完全完成之前会被阻塞:发送操作包括了“复制元素值”和“放置副本到通道内部”这两个步骤。在这两个步骤完全完成之前,发起这个发送操作的那句代码会一直阻塞在那里,在它之后的代码不会有执行的机会,直到阻塞解除。

 

四、Channel的类型

channel 分为不带缓存的 channel 和带缓存的 channel。

使用 make 声明一个通道类型变量时,除了指定通道的元素类型,还可以指定通道的容量,也就是通道最多可以缓存多少个元素值,当容量为 0 时,该通道为非缓冲通道,当容量大于 0 时,该通道为带有缓冲的通道。

ch := make(chan int)    //无缓冲的channel
ch := make(chan int, 3) //带缓冲的channel

非缓冲通道和缓冲通道有着不同的数据传递方式:

  • 非缓冲通道:无论是发送操作还是接收操作,一开始执行就会被阻塞,直到配对的操作也开始执行,才会继续传递。即:只有收发双方对接上了,数据才会被传递。数据直接从发送方复制到接收方。非缓冲通道传递数据的方式是同步的。
  • 缓冲通道:如果通道已满,对它的所有发送操作都会被阻塞,直到通道中有元素值被接收走。反之,如果通道已空,那么对它的所有接收操作都会被阻塞,直到通道中有新的元素值出现。元素值会先从发送方复制到缓冲通道,之后再由缓冲通道复制给接收方。缓冲通道传递数据的方式是异步的。

 

五、Channel的源码学习

Channel 的主要实现在 src/runtime/chan.go 中,go 版本为 go version go1.14.6 darwin/amd64这里主要看 chansend 如何实现的。

func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
if c == nil {
if !block {
 return false
}
gopark(nil, nil, waitReasonChanSendNilChan, traceEvGoStop, 2)
throw("unreachable")
}

if debugChan {
print("chansend: chan=", c, "\n")
}

if raceenabled {
racereadpc(c.raceaddr(), callerpc, funcPC(chansend))
}

// Fast path: check for failed non-blocking operation without acquiring the lock.
//
// After observing that the channel is not closed, we observe that the channel is
// not ready for sending. Each of these observations is a single word-sized read
// (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
// Because a closed channel cannot transition from 'ready for sending' to
// 'not ready for sending', even if the channel is closed between the two observations,
// they imply a moment between the two when the channel was both not yet closed
// and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
//
// It is okay if the reads are reordered here: if we observe that the channel is not
// ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first observation.
if !block && c.closed == 0 && ((c.dataqsiz == 0 && c.recvq.first == nil) ||
(c.dataqsiz > 0 && c.qcount == c.dataqsiz)) {
return false
}

var t0 int64
if blockprofilerate > 0 {
t0 = cputicks()
}

lock(&c.lock)

if c.closed != 0 {
unlock(&c.lock)
panic(plainError("send on closed channel"))
}

if sg := c.recvq.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
// directly to the receiver, bypassing the channel buffer (if any).
send(c, sg, ep, func() { unlock(&c.lock) }, 3)
return true
}

if c.qcount < c.dataqsiz {
// Space is available in the channel buffer. Enqueue the element to send.
qp := chanbuf(c, c.sendx)
if raceenabled {
 raceacquire(qp)
 racerelease(qp)
}
typedmemmove(c.elemtype, qp, ep)
c.sendx++
if c.sendx == c.dataqsiz {
 c.sendx = 0
}
c.qcount++
unlock(&c.lock)
return true
}

if !block {
unlock(&c.lock)
return false
}

// Block on the channel. Some receiver will complete our operation for us.
gp := getg()
mysg := acquireSudog()
mysg.releasetime = 0
if t0 != 0 {
mysg.releasetime = -1
}
// No stack splits between assigning elem and enqueuing mysg
// on gp.waiting where copystack can find it.
mysg.elem = ep
mysg.waitlink = nil
mysg.g = gp
mysg.isSelect = false
mysg.c = c
gp.waiting = mysg
gp.param = nil
c.sendq.enqueue(mysg)
gopark(chanparkcommit, unsafe.Pointer(&c.lock), waitReasonChanSend, traceEvGoBlockSend, 2)
// Ensure the value being sent is kept alive until the
// receiver copies it out. The sudog has a pointer to the
// stack object, but sudogs aren't considered as roots of the
// stack tracer.
KeepAlive(ep)

// someone woke us up.
if mysg != gp.waiting {
throw("G waiting list is corrupted")
}
gp.waiting = nil
gp.activeStackChans = false
if gp.param == nil {
if c.closed == 0 {
 throw("chansend: spurious wakeup")
}
panic(plainError("send on closed channel"))
}
gp.param = nil
if mysg.releasetime > 0 {
blockevent(mysg.releasetime-t0, 2)
}
mysg.c = nil
releaseSudog(mysg)
return true
}

从代码中可以看到:

  • 有 goroutine 阻塞在 channel recv 队列上,此时缓存队列为空,直接将消息发送给 reciever goroutine,只产生一次复制。
  • 当 channel 缓存队列有剩余空间时,将数据放到队列里,等待接收,接收后总共产生两次复制。
  • 当 channel 缓存队列已满时,将当前 goroutine 加入 send 队列并阻塞。

所以,开头的面试题就有了答案:

读:

读已经关闭的 chan,能一直读到内容,但是读到的内容根据通道内关闭前是否有元素而不同。

如果 chan 关闭前,buffer 内有元素还未读,会正确读到 chan 内的值,且返回的第二个 bool 值为 true;

如果 chan 关闭前,buffer 内有元素已经被读完,chan 内无值,返回 channel 元素的零值,第二个 bool 值为 false。

写:

写已经关闭的 chan 会 panic。

 

总结

关于Go中Channel发送和接收操作的文章就介绍至此,更多相关Go Channel发送和接收内容请搜索编程宝库以前的文章,希望大家多多支持编程宝库

 前述 Go语言和GoLand的关系好比于java和idea、python和pycharm,因此我们需要先安装好Go语言后才能安装GoLand。它的安装和java,pytho ...