以太坊源码解读(16)miner模块和Worker模块
最新的以太坊源码Miner模块有较大的改动,取消了原来的agent模块以及work对象,但是基本上的逻辑还是一样的。Miner模块的主要执行部分在worker中,Miner对象及其方法主要控制着模块的开关和外部接口。
一、Miner模块
type Miner struct { mux *event.TypeMux worker *worker coinbase common.Address eth Backend engine consensus.Engine exitCh chan struct{} canStart int32 // can start indicates whether we can start the mining operation shouldStart int32 // should start indicates whether we should start after sync }
1)worker:worker模块,用于支持主要的挖矿流程;
2)coinbase:矿工地址;
3)eth:以太坊命令终端;
4)engine:共识引擎;
5)canStart、shouldStart:两个调控Miner模块是否运行的开关。
miner.update()方法监听downloader事件,控制着canStart和shouldStart这两个开关,用于抵挡DOS攻击。
1、当监听到downloader的StartEvent事件时,canStart设置为0,表示downloader同步时不可进行挖矿,如果正在挖矿(miner.mining == ture),停止挖矿,同时将shouldStart设置为1,以便下次直接开始挖矿;
2、当监听到downloader的DoneEvent事件或者FailedEvent事件,判断shouldStart是否打开。如果是打开的,则再打开canStart,将shouldStart关闭。此时,将挖矿的控制权完全交给miner.Start()方法。
func (self *Miner) update() { events := self.mux.Subscribe(downloader.StartEvent{}, downloader.DoneEvent{}, downloader.FailedEvent{}) defer events.Unsubscribe() for { select { case ev := <-events.Chan(): if ev == nil { return } switch ev.Data.(type) { case downloader.StartEvent: atomic.StoreInt32(&self.canStart, 0) if self.Mining() { self.Stop() atomic.StoreInt32(&self.shouldStart, 1) log.Info("Mining aborted due to sync") } case downloader.DoneEvent, downloader.FailedEvent: shouldStart := atomic.LoadInt32(&self.shouldStart) == 1 atomic.StoreInt32(&self.canStart, 1) atomic.StoreInt32(&self.shouldStart, 0) if shouldStart { self.Start(self.coinbase) } // stop immediately and ignore all further pending events return } case <-self.exitCh: return } } }
Miner的启动也很简单,打开shouldStart,设置coinbase,然后启动worker。
func (self *Miner) Start(coinbase common.Address) { atomic.StoreInt32(&self.shouldStart, 1) self.SetEtherbase(coinbase) if atomic.LoadInt32(&self.canStart) == 0 { log.Info("Network syncing, will start miner afterwards") return } self.worker.start() }
二、Worker模块
先来看看Worker的数据结构比较重要的东西:
type worker struct { engine consensus.Engine // 公式引擎 eth Backend // 以太坊终端 chain *core.BlockChain // 区块链对象 gasFloor uint64 gasCeil uint64 // Subscriptions mux *event.TypeMux txsCh chan core.NewTxsEvent // 交易池更新事件 txsSub event.Subscription chainHeadCh chan core.ChainHeadEvent // 区块头更新事件 chainHeadSub event.Subscription chainSideCh chan core.ChainSideEvent // 区块链分叉事件 chainSideSub event.Subscription // Channels newWorkCh chan *newWorkReq taskCh chan *task resultCh chan *types.Block startCh chan struct{} exitCh chan struct{} resubmitIntervalCh chan time.Duration resubmitAdjustCh chan *intervalAdjust current *environment // 当前挖矿生命周期的执行环境 localUncles map[common.Hash]*types.Block // 本地分叉区块作为潜在叔块 remoteUncles map[common.Hash]*types.Block // 分叉区块中潜在的叔块 unconfirmed *unconfirmedBlocks // 本地产生但尚未被确认的区块 mu sync.RWMutex // The lock used to protect the coinbase and extra fields coinbase common.Address extra []byte pendingMu sync.RWMutex pendingTasks map[common.Hash]*task // 挖矿任务map snapshotMu sync.RWMutex snapshotBlock *types.Block // 快照的区块 snapshotState *state.StateDB // 快照的状态 // atomic status counters running int32 // 判断共识引擎是否启动 newTxs int32 // 记录上次递交任务后新来的区块数量 }
在初始化miner的时候就会新建worker,即调用newWorker()函数。该函数首先配置了worker对象,然后订阅交易池事件、规范链更新事件和分叉事件。最后启动了4个goroutine。
func newWorker(config *params.ChainConfig, engine consensus.Engine, eth Backend, mux *event.TypeMux, recommit time.Duration, gasFloor, gasCeil uint64, isLocalBlock func(*types.Block) bool) *worker { worker := &worker{ ... } worker.txsSub = eth.TxPool().SubscribeNewTxsEvent(worker.txsCh) worker.chainHeadSub = eth.BlockChain().SubscribeChainHeadEvent(worker.chainHeadCh) worker.chainSideSub = eth.BlockChain().SubscribeChainSideEvent(worker.chainSideCh) // Sanitize recommit interval if the user-specified one is too short. if recommit < minRecommitInterval { log.Warn("Sanitizing miner recommit interval", "provided", recommit, "updated", minRecommitInterval) recommit = minRecommitInterval } go worker.mainLoop() go worker.newWorkLoop(recommit) go worker.resultLoop() go worker.taskLoop() // Submit first work to initialize pending state. worker.startCh <- struct{}{} return worker }
最后通过向startCh中传入一个struct{}{},直接进入newWorkLoop的逻辑。
newWorkLoop
newWorkLoop主要监听两个重要的通道,一个是startCh通道,一个是chainHeadCh,这两个通道均用于清理特定父区块的pending tasks列表,然后递交基于父区块的挖矿task)。区别在于startCh通道启动是基于当前的currentBlock,而chainHeadCh是基于新传来的区块头。
func (w *worker) newWorkLoop(recommit time.Duration) { var ( interrupt *int32 minRecommit = recommit // minimal resubmit interval specified by user. timestamp int64 // timestamp for each round of mining. ) timer := time.NewTimer(0) <-timer.C // discard the initial tick // commit aborts in-flight transaction execution with given signal and resubmits a new one. commit := func(noempty bool, s int32) { if interrupt != nil { atomic.StoreInt32(interrupt, s) } interrupt = new(int32) w.newWorkCh <- &newWorkReq{interrupt: interrupt, noempty: noempty, timestamp: timestamp} timer.Reset(recommit) atomic.StoreInt32(&w.newTxs, 0) } ... // clearPending cleans the stale pending tasks. clearPending := func(number uint64) { w.pendingMu.Lock() for h, t := range w.pendingTasks { if t.block.NumberU64()+staleThreshold <= number { delete(w.pendingTasks, h) } } w.pendingMu.Unlock() } for { select { case <-w.startCh: clearPending(w.chain.CurrentBlock().NumberU64()) timestamp = time.Now().Unix() commit(false, commitInterruptNewHead) case head := <-w.chainHeadCh: clearPending(head.Block.NumberU64()) timestamp = time.Now().Unix() commit(false, commitInterruptNewHead)
清理残留挖矿任务后,就要构建新的挖矿任务,这时候调用commit函数,构建一个newWorkReq对象,传入newWorkCh通道,进入MainLoop协程。MainLoop()监听三个重要的通道,newWorkCh(新work请求通道)、txsCh(交易池更新事件通道)以及chainSideCh(区块链分叉事件通道)。
MainLoop:
for { select { // task1:直接启动commitNewWork,进一步递交挖矿task case req := <-w.newWorkCh: w.commitNewWork(req.interrupt, req.noempty, req.timestamp) // task2:出现分叉后,处理叔块 case ev := <-w.chainSideCh: // 检验该hash的区块是否已经被当做潜在叔块,如果是,则忽略 if _, exist := w.localUncles[ev.Block.Hash()]; exist { continue } if _, exist := w.remoteUncles[ev.Block.Hash()]; exist { continue } // 将该区块作为潜在叔块加入叔块map,key为该区块的矿工地址 if w.isLocalBlock != nil && w.isLocalBlock(ev.Block) { w.localUncles[ev.Block.Hash()] = ev.Block } else { w.remoteUncles[ev.Block.Hash()] = ev.Block } // 如果我们正在mining的区块少于两个uncles,则添加新的uncles并重新生成mining block if w.isRunning() && w.current != nil && w.current.uncles.Cardinality() < 2 { start := time.Now() if err := w.commitUncle(w.current, ev.Block.Header()); err == nil { var uncles []*types.Header w.current.uncles.Each(func(item interface{}) bool { hash, ok := item.(common.Hash) if !ok { return false } uncle, exist := w.localUncles[hash] if !exist { uncle, exist = w.remoteUncles[hash] } if !exist { return false } uncles = append(uncles, uncle.Header()) return false }) w.commit(uncles, nil, true, start) } } // task3:交易池更新后 case ev := <-w.txsCh: // 待挖矿停止,执行该交易并更新世界状态 // 如果该交易与正在mining的交易不连续,则直接忽略 if !w.isRunning() && w.current != nil { w.mu.RLock() coinbase := w.coinbase w.mu.RUnlock() txs := make(map[common.Address]types.Transactions) for _, tx := range ev.Txs { acc, _ := types.Sender(w.current.signer, tx) txs[acc] = append(txs[acc], tx) } txset := types.NewTransactionsByPriceAndNonce(w.current.signer, txs) w.commitTransactions(txset, coinbase, nil) w.updateSnapshot() } else { // If we're mining, but nothing is being processed, wake on new transactions if w.config.Clique != nil && w.config.Clique.Period == 0 { w.commitNewWork(nil, false, time.Now().Unix()) } } atomic.AddInt32(&w.newTxs, int32(len(ev.Txs)))
接着上面的的流程,newWorkCh通道传出req后,直接启动了commitNewWork()函数。
commitNewWork()函数的主要功能是递交一个新的task:
1)初始化一个新区块头给待挖矿的区块
2)为当前挖矿周期初始化一个工作环境work
3)获取交易池中每个账户地址的交易列表中的第一个交易后排序,然后应用这些交易
4)获取两个叔块
6)将区块递交给commit,用于生成task
7)更新状态快照,供前端查询
func (w *worker) commitNewWork(interrupt *int32, noempty bool, timestamp int64) { w.mu.RLock() defer w.mu.RUnlock() tstart := time.Now() parent := w.chain.CurrentBlock() // 如果父区块的时间比现在的时间还大,将当前时间设置为父区块时间+1 if parent.Time().Cmp(new(big.Int).SetInt64(timestamp)) >= 0 { timestamp = parent.Time().Int64() + 1 } // 如果父区块时间大于本地时间,就等一会 if now := time.Now().Unix(); timestamp > now+1 { wait := time.Duration(timestamp-now) * time.Second log.Info("Mining too far in the future", "wait", common.PrettyDuration(wait)) time.Sleep(wait) } // task1:初始化区块头给待挖矿的区块,调用core.CalcGasLimit方法,计算gas限额 // 如果父区块使用的gas大于父区块gasLimit的2/3,那么当前区块的gasLimit就会增加 num := parent.Number() header := &types.Header{ ParentHash: parent.Hash(), Number: num.Add(num, common.Big1), GasLimit: core.CalcGasLimit(parent, w.gasFloor, w.gasCeil), Extra: w.extra, Time: big.NewInt(timestamp), } // 共识引擎启动后才能设置coinbase到区块头 (avoid spurious block rewards) if w.isRunning() { if w.coinbase == (common.Address{}) { log.Error("Refusing to mine without etherbase") return } header.Coinbase = w.coinbase } // 计算挖矿难度值 if err := w.engine.Prepare(w.chain, header); err != nil { log.Error("Failed to prepare header for mining", "err", err) return } // 处理DAO事件分叉 if daoBlock := w.config.DAOForkBlock; daoBlock != nil { ... } // task2:设置当前任务的environment,其中获取了7个ancestors和与之直接相连的familily err := w.makeCurrent(parent, header) if err != nil { log.Error("Failed to create mining context", "err", err) return } // 创建当前work task env := w.current if w.config.DAOForkSupport && w.config.DAOForkBlock != nil && w.config.DAOForkBlock.Cmp(header.Number) == 0 { misc.ApplyDAOHardFork(env.state) } // task3:添加两个叔块到当前mining block中 uncles := make([]*types.Header, 0, 2) commitUncles := func(blocks map[common.Hash]*types.Block) { // 先清除之前的uncle for hash, uncle := range blocks { if uncle.NumberU64()+staleThreshold <= header.Number.Uint64() { delete(blocks, hash) } } for hash, uncle := range blocks { if len(uncles) == 2 { break } if err := w.commitUncle(env, uncle.Header()); err != nil { log.Trace("Possible uncle rejected", "hash", hash, "reason", err) } else { log.Debug("Committing new uncle to block", "hash", hash) uncles = append(uncles, uncle.Header()) } } } // 优先选择本地叔块 commitUncles(w.localUncles) commitUncles(w.remoteUncles) if !noempty { // 如果noempty参数为false,根据临时复制状态创建一个空块,以便在不等待块执行完成的情况下提前创建block w.commit(uncles, nil, false, tstart) } // task4:从交易池pending列表中向区块中添加可用的交易 pending, err := w.eth.TxPool().Pending() if err != nil { log.Error("Failed to fetch pending transactions", "err", err) return } // 如果没有可用的交易,更新一下状态快照 if len(pending) == 0 { w.updateSnapshot() return } // 将交易分为local和remote,分别执行commitTransaction,将交易执行并传入block localTxs, remoteTxs := make(map[common.Address]types.Transactions), pending for _, account := range w.eth.TxPool().Locals() { if txs := remoteTxs[account]; len(txs) > 0 { delete(remoteTxs, account) localTxs[account] = txs } } if len(localTxs) > 0 { txs := types.NewTransactionsByPriceAndNonce(w.current.signer, localTxs) if w.commitTransactions(txs, w.coinbase, interrupt) { return } } if len(remoteTxs) > 0 { txs := types.NewTransactionsByPriceAndNonce(w.current.signer, remoteTxs) if w.commitTransactions(txs, w.coinbase, interrupt) { return } } // task5:递交 w.commit(uncles, w.fullTaskHook, true, tstart) }
最后是commit方法计算挖矿奖励,更新block,将上面生成的block递交到一个挖矿task,最后将task传入taskCh通道。
func (w *worker) commit(uncles []*types.Header, interval func(), update bool, start time.Time) error { // Deep copy receipts here to avoid interaction between different tasks. receipts := make([]*types.Receipt, len(w.current.receipts)) for i, l := range w.current.receipts { receipts[i] = new(types.Receipt) *receipts[i] = *l } s := w.current.state.Copy() // 计算挖矿奖励(包括叔块奖励) block, err := w.engine.Finalize(w.chain, w.current.header, s, w.current.txs, uncles, w.current.receipts) if err != nil { return err } if w.isRunning() { if interval != nil { interval() } select { // 生成task,传入taskCh通道 case w.taskCh <- &task{receipts: receipts, state: s, block: block, createdAt: time.Now()}: w.unconfirmed.Shift(block.NumberU64() - 1) feesWei := new(big.Int) for i, tx := range block.Transactions() { feesWei.Add(feesWei, new(big.Int).Mul(new(big.Int).SetUint64(receipts[i].GasUsed), tx.GasPrice())) } feesEth := new(big.Float).Quo(new(big.Float).SetInt(feesWei), new(big.Float).SetInt(big.NewInt(params.Ether))) log.Info("Commit new mining work", "number", block.Number(), "sealhash", w.engine.SealHash(block.Header()), "uncles", len(uncles), "txs", w.current.tcount, "gas", block.GasUsed(), "fees", feesEth, "elapsed", common.PrettyDuration(time.Since(start))) case <-w.exitCh: log.Info("Worker has exited") } } if update { w.updateSnapshot() } return nil }
taskLoop
task进入taskLoop后,被加入pendingTasks列表:
case task := <-w.taskCh: if w.newTaskHook != nil { w.newTaskHook(task) } // 计算header数据的RLP hash值,判断是否有相同的块已经在挖矿中了,如果是则放弃;如果不是,则终止之前的挖矿 sealHash := w.engine.SealHash(task.block.Header()) if sealHash == prev { continue } // Interrupt previous sealing operation interrupt() stopCh, prev = make(chan struct{}), sealHash if w.skipSealHook != nil && w.skipSealHook(task) { continue } w.pendingMu.Lock() w.pendingTasks[w.engine.SealHash(task.block.Header())] = task w.pendingMu.Unlock() // 最后执行挖矿,结果会通过resultCh传入resultLoop if err := w.engine.Seal(w.chain, task.block, w.resultCh, stopCh); err != nil { log.Warn("Block sealing failed", "err", err) }
resultLoop
最后是resultLoop,挖矿结果传入resultLoop,先从pendingTasks列表中取出刚执行挖矿的task,更新收据日志中的blockHash。然后将区块存入数据库,最后将区块广播出去。
func (w *worker) resultLoop() { for { select { case block := <-w.resultCh: // Short circuit when receiving empty result. if block == nil { continue } // Short circuit when receiving duplicate result caused by resubmitting. if w.chain.HasBlock(block.Hash(), block.NumberU64()) { continue } var ( sealhash = w.engine.SealHash(block.Header()) hash = block.Hash() ) w.pendingMu.RLock() task, exist := w.pendingTasks[sealhash] w.pendingMu.RUnlock() if !exist { log.Error("Block found but no relative pending task", "number", block.Number(), "sealhash", sealhash, "hash", hash) continue } // Different block could share same sealhash, deep copy here to prevent write-write conflict. var ( receipts = make([]*types.Receipt, len(task.receipts)) logs []*types.Log ) for i, receipt := range task.receipts { receipts[i] = new(types.Receipt) *receipts[i] = *receipt // Update the block hash in all logs since it is now available and not when the // receipt/log of individual transactions were created. for _, log := range receipt.Logs { log.BlockHash = hash } logs = append(logs, receipt.Logs...) } // Commit block and state to database. stat, err := w.chain.WriteBlockWithState(block, receipts, task.state) if err != nil { log.Error("Failed writing block to chain", "err", err) continue } log.Info("Successfully sealed new block", "number", block.Number(), "sealhash", sealhash, "hash", hash, "elapsed", common.PrettyDuration(time.Since(task.createdAt))) // Broadcast the block and announce chain insertion event w.mux.Post(core.NewMinedBlockEvent{Block: block}) var events []interface{} switch stat { case core.CanonStatTy: events = append(events, core.ChainEvent{Block: block, Hash: block.Hash(), Logs: logs}) events = append(events, core.ChainHeadEvent{Block: block}) case core.SideStatTy: events = append(events, core.ChainSideEvent{Block: block}) } w.chain.PostChainEvents(events, logs) // Insert the block into the set of pending ones to resultLoop for confirmations w.unconfirmed.Insert(block.NumberU64(), block.Hash()) case <-w.exitCh: return } } }
三、其他函数中一些值得注意的函数
1、commitTransaction
a)gasPool的设置
w.current.gasPool = new(core.GasPool).AddGas(w.current.header.GasLimit)
b)进入交易执行循环
交易执行的过程中有三种情况会被打断:(1)交易还在执行,但是新的区块已经经过广播到达本地,interrupt信号为1;(2)worker start或者restart,interrupt信号为1;(3)worker重新构造区块,包含了新到的交易,interrupt信号为2。
对于前两种,worker的本次执行就会终止,但对于第三种情况,本次执行依然会被递交到consensus engine。
c)如果区块工作环境剩余gas小于21000,则退出循环;否则从排好序的列表里取出交易;
if w.current.gasPool.Gas() < params.TxGas { log.Trace("Not enough gas for further transactions", "have", w.current.gasPool, "want", params.TxGas) break } // Retrieve the next transaction and abort if all done tx := txs.Peek() if tx == nil { break }
d)执行交易并处理错误
// 首先准备当前世界状态 w.current.state.Prepare(tx.Hash(), common.Hash{}, w.current.tcount) // 使用commitTransaction去调用交易执行的方法core.ApplyTransaction,得到收据并放入当前执行环境 logs, err := w.commitTransaction(tx, coinbase) switch err { case core.ErrGasLimitReached: // gasPool不够执行交易,则将当前交易从txs中移除 log.Trace("Gas limit exceeded for current block", "sender", from) txs.Pop() case core.ErrNonceTooLow: // 交易nonce太低,则取下一个交易替换处理列表中的第一个交易 log.Trace("Skipping transaction with low nonce", "sender", from, "nonce", tx.Nonce()) txs.Shift() case core.ErrNonceTooHigh: // 交易Nonce太高,则将当前交易从txs列表中移除 log.Trace("Skipping account with hight nonce", "sender", from, "nonce", tx.Nonce()) txs.Pop() case nil: // 一切正常,收集日志,统计执行成功的交易技术 coalescedLogs = append(coalescedLogs, logs...) w.current.tcount++ txs.Shift() default: // Strange error, 如果当前交易发送者账户里还有交易,则取下一个交易替换列表中第一个交易,重新排序 log.Debug("Transaction failed, account skipped", "hash", tx.Hash(), "err", err) txs.Shift() }
POW的本质是基于算力解决一个数学上困难的问题,解决问题关键点是除了暴力枚举,没有任何办法可以找到我们所需要的nonce值,但对于验证输出的结果是非常简单容易的。 经典的比特币POW的算法原理是对 ...