归并排序(Merge Sort)
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
1. 归并排序的算法描述
- 把长度为n的输入序列分成两个长度为n/2的子序列;
- 对这两个子序列分别采用归并排序;
- 将两个排序好的子序列合并成一个最终的排序序列。
2. 归并排序的动图演示
3. 归并排序的算法分析
归并排序是一种稳定的排序方法。和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(nlogn)的时间复杂度。代价是需要额外的内存空间。
4. 归并排序的代码实现
1)JavaScript 代码实现
function mergeSort(arr) { // 采用自上而下的递归方法 var len = arr.length; if(len < 2) { return arr; } var middle = Math.floor(len / 2), left = arr.slice(0, middle), right = arr.slice(middle); return merge(mergeSort(left), mergeSort(right)); } function merge(left, right) { var result = []; while (left.length && right.length) { if (left[0] <= right[0]) { result.push(left.shift()); } else { result.push(right.shift()); } } while (left.length) result.push(left.shift()); while (right.length) result.push(right.shift()); return result; }
2)Python 代码实现
def mergeSort(arr): import math if(len(arr)<2): return arr middle = math.floor(len(arr)/2) left, right = arr[0:middle], arr[middle:] return merge(mergeSort(left), mergeSort(right)) def merge(left,right): result = [] while left and right: if left[0] <= right[0]: result.append(left.pop(0)) else: result.append(right.pop(0)); while left: result.append(left.pop(0)) while right: result.append(right.pop(0)); return result
3)Go 代码实现
func mergeSort(arr []int) []int { length := len(arr) if length < 2 { return arr } middle := length / 2 left := arr[0:middle] right := arr[middle:] return merge(mergeSort(left), mergeSort(right)) } func merge(left []int, right []int) []int { var result []int for len(left) != 0 && len(right) != 0 { if left[0] <= right[0] { result = append(result, left[0]) left = left[1:] } else { result = append(result, right[0]) right = right[1:] } } for len(left) != 0 { result = append(result, left[0]) left = left[1:] } for len(right) != 0 { result = append(result, right[0]) right = right[1:] } return result }
4)Java 代码实现
public class MergeSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); if (arr.length < 2) { return arr; } int middle = (int) Math.floor(arr.length / 2); int[] left = Arrays.copyOfRange(arr, 0, middle); int[] right = Arrays.copyOfRange(arr, middle, arr.length); return merge(sort(left), sort(right)); } protected int[] merge(int[] left, int[] right) { int[] result = new int[left.length + right.length]; int i = 0; while (left.length > 0 && right.length > 0) { if (left[0] <= right[0]) { result[i++] = left[0]; left = Arrays.copyOfRange(left, 1, left.length); } else { result[i++] = right[0]; right = Arrays.copyOfRange(right, 1, right.length); } } while (left.length > 0) { result[i++] = left[0]; left = Arrays.copyOfRange(left, 1, left.length); } while (right.length > 0) { result[i++] = right[0]; right = Arrays.copyOfRange(right, 1, right.length); } return result; } }
5)Php 代码实现
function mergeSort($arr) { $len = count($arr); if ($len < 2) { return $arr; } $middle = floor($len / 2); $left = array_slice($arr, 0, $middle); $right = array_slice($arr, $middle); return merge(mergeSort($left), mergeSort($right)); } function merge($left, $right) { $result = []; while (count($left) > 0 && count($right) > 0) { if ($left[0] <= $right[0]) { $result[] = array_shift($left); } else { $result[] = array_shift($right); } } while (count($left)) $result[] = array_shift($left); while (count($right)) $result[] = array_shift($right); return $result; }
6)C 代码实现
int min(int x, int y) { return x < y ? x : y; } void merge_sort(int arr[], int len) { int *a = arr; int *b = (int *) malloc(len * sizeof(int)); int seg, start; for (seg = 1; seg < len; seg += seg) { for (start = 0; start < len; start += seg * 2) { int low = start, mid = min(start + seg, len), high = min(start + seg * 2, len); int k = low; int start1 = low, end1 = mid; int start2 = mid, end2 = high; while (start1 < end1 && start2 < end2) b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++]; while (start1 < end1) b[k++] = a[start1++]; while (start2 < end2) b[k++] = a[start2++]; } int *temp = a; a = b; b = temp; } if (a != arr) { int i; for (i = 0; i < len; i++) b[i] = a[i]; b = a; } free(b); }
7)C++ 代码实现
template<typename T> // 整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)的運算子功能 void merge_sort(T arr[], int len) { T *a = arr; T *b = new T[len]; for (int seg = 1; seg < len; seg += seg) { for (int start = 0; start < len; start += seg + seg) { int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len); int k = low; int start1 = low, end1 = mid; int start2 = mid, end2 = high; while (start1 < end1 && start2 < end2) b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++]; while (start1 < end1) b[k++] = a[start1++]; while (start2 < end2) b[k++] = a[start2++]; } T *temp = a; a = b; b = temp; } if (a != arr) { for (int i = 0; i < len; i++) b[i] = a[i]; b = a; } delete[] b; }
8)C# 代码实现
public static List<int> sort(List<int> lst) { if (lst.Count <= 1) return lst; int mid = lst.Count / 2; List<int> left = new List(); // 定义左侧List List<int> right = new List (); // 定义右侧List // 以下兩個循環把 lst 分為左右兩個 List for (int i = 0; i < mid; i++) left.Add(lst[i]); for (int j = mid; j <lst.Count; j++) right.Add(lst[j]); left = sort(left); right = sort(right); return merge(left, right); } static List<int> merge(Listlt;int> left, Listlt;int> right) { Listlt;int> temp = new Listlt;int>(); while (left.Count > 0 && right.Count > 0) { if (left[0] <= right[0]) { temp.Add(left[0]); left.RemoveAt(0); } else { temp.Add(right[0]); right.RemoveAt(0); } } if (left.Count > 0) { for (int i = 0; i < left.Count; i++) temp.Add(left[i]); } if (right.Count > 0) { for (int i = 0; i < right.Count; i++) temp.Add(right[i]); } return temp; }
9)Ruby 代码实现
def merge list return list if list.size < 2 pivot = list.size / 2 # Merge lambda { |left, right| final = [] until left.empty? or right.empty? final << if left.first < right.first; left.shift else right.shift end end final + left + right }.call merge(list[0...pivot]), merge(list[pivot..-1]) end
快速排序(Quick Sort):快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。快速排序的算法描述:快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:从数列中挑出一个元素,称为 “基准”(pivot);